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1 Introduction

A city is a large, complex society. It appears hopeless to try to learn anything about city
residents’ policy preferences. We may have to patiently wait for natural experiments to
unfold, or for confidential data to become accessible, or for expensive surveys to receive
research grants. Here we suggest an alternative to these costly strategies. We suggest
bringing a primal-dual perspective to the city, by casting a lower bound on policy prefer-
ences as the solution of a suitable linear program. Data constraints may make a direct
solution to this (primal) program impossible. But an indirect (dual) solution may be easy
to obtain. We illustrate this (novel, no literature appears to be available on this) approach
with respect to “centrism”; as residents’ preference for (or against) the traditional CBD’s
role as employment and shopping hub.

Residents’ “centrism” correlates with many issues in current urban political economy. E.g.,
an owner-occupier, or a landlord, with all his properties near the center, will not just
endorse city center redevelopment. Either will also reject constraints on building height
(which bind near the center yet bind nowhere else). Or, a landlord with most of her
properties near the periphery, much as a nearby owner-occupier, will not just vote against
an urban growth boundary, or in favor of a peripheral shopping center, say. Also, either
will likely also vote against a carbon tax (Holian/Kahn (2015)) or a Pigouvian toll (both of
which make commutes more costly for the peripheral resident). In short, centrism proxies
residents’ preferences on many contested issues in urban politics.

City residents always divide into landlords and renters. The “absentee landlord” literature
has all landlords live outside the city; all city residents are renters. The “public ownership”
literature lets all city residents share in urban rent; all city residents are landlords. But real
cities, as this short paper’s subject, exhibit ownership shares in between those extremes.
We replace both the absentee landlord-assumption and the public-ownership assumption
with a flexible matching framework. We make half the city’s population a tenant and the
other half a landlord (i.e. owning a home but also renting out one to a single tenant).
Both tenants and landlords live in any of the city’s residential “rings” around the CBD.
Any landlord-tenant-pair is a spatial match, its combination of locations generating its
own centrism-attitude.

We then ask for the least number of centrist landlords consistent with the distribution
of households (or real estate) across city rings. This is the primal “minimum centrists”
problem. But landlord-tenant matchings are unobservable, and hence so are minimum
centrists. Alternatively, we may ask for the largest valuation of ring populations consistent
with the set of matches producing a centrist preference. This is the corresponding dual
"maximum valuation” problem. The paper’s contribution is to prove that the solution
to either program is the greatest cumulative ring difference. As corollary, computing
(unobservable) minimum centrists only requires computing the greatest cumulative sum
of (easily observable) ring differences. Rather than extract policy preference “brute force”,
we should exploit observable knowledge of the built environment.

Our analysis complements, and also extends, the analysis of suburbanization set out in
Dascher (2019). There the “greatest cumulative ring difference” is shown to bound the
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Figure 1: Minimum Centrists, 2000 and 2010, All Metro Areas

“minimum number of centrists” from below. This paper now shows this lower bound

to equal the minimum number of centrists (decentrists).!

Somewhat loosely, here we
“close the gap” between the two concepts. There is no gap. A similar result obtains for
computing the “minimum number of decentrists”. We will show that the minimum number
of decentrists equals (minus) the “least cumulative ring difference”. And so we are also

able to bound true (unobservable) centrists not just from below, but also from above.

These bounds are meaningful, and for motivation we briefly illustrate our concepts’s appeal
to understanding centrism in the US. Note first that a majority of centrists takes decisions
that favor the center. These decisions, in turn, reinforce the share of centrists. One
implication of centrism is the existence of multiple equilibria. Cities with a majoritarian
share of centrists should become more centrist over time; while the opposite is true for
cities with a majoritarian share of decentrists. Fig. (1) shows the share of minimum
centrists in both 2000 (horizontal axis) and 2010 (vertical axis), for every US metro area.
Only four metro areas have a minimum centrists share beyond one half. Consistent with
theory, these metro areas do not see their minimum centrist shares contract. Conversely,
and also consistent with our theory, metro areas with minimum centrist share short of 1/2
often see it drop further (and with only few exceptions see it rise).

The paper has six sections. Section 2 states the primal problem, of identifying the least
number of centrists that fits the given distribution of population across city rings. Section
3 offers trial solutions for two examples that point to the building blocks of the solution for
the general city. Section 4 states, and proves, the solution for minimum centrists. Section
5 applies similar reasoning to solving for minimum decentrists. And section 6 concludes.

! Jacobs (1961) and Breheny (2007) also use the term “decentrists”, though with a very different mean-
ing. For Jacobs, decentrists are those early 20th century urban and regional planners such as Lewis
Mumford, Clarence Stein, Henry Wright and Catherine Bauer, who advocated “thinning out large cities”
by dispersing their “enterprises and populations into smaller, separated cities or, better yet, towns” (p.
19).



2 Landlord-Tenant Matching

Monocentric City. A closed and monocentric city (as pioneered by Wheaton (1973),
Pines/Sadka (1986) and Brueckner (1987)) juts 7 units of distance out from the CBD
(with 7 determined shortly). Commuting costs for a resident living at distance r from the
CBD are tr. Ricardian rent ¢ follows ¢(r) = t(77 — ). The city’s overall population is s,
and the urban wage is w. Residents consume one unit of housing. Housing is built by
profit maximizing investors. One unit of capital k£ combined with one unit of land yields
h(k) units of housing, where b’ > 0 and h” < 0 (again, Brueckner (1987)).

Housing. If p is the price of capital, investors choose k so as to satisfy the q(r)hi(k) =p
necessary for maximum profit. The optimal capital depends on rent ¢ and price p, and so
can be written as k(t(7 — r),p). Let h(r) be shorthand for the building height obtained
for this optimal capital choice. Then the city boundary 7 is determined by the condition
that the housing market clear,

/T a(rh(r)dr = s, (1)
0

where a(r) is land available in a ring of unit width r units of distance away from the CBD.
Ratio a(r)h(r)/s, also written f(r), indicates the share of the population commuting
from within that ring to the CBD. Correspondingly, F'(r) denotes the share of households
commuting 7 or less.? Now divide the city into i = 1, ..., n concentric rings of equal width
(n even) around the CBD, with n large enough to justify treating rent, building height,
commuting times etc. as identical across ring i’s plots. Housing in ring 7 is app. f(r;)s.
We set f(r;)s = b;, to conform with the LP notation introduced shortly.?

Ownership. Traditional urban modeling has residents own urban housing jointly or treats
landlords as absentee. Yet we want to avoid both the traditional “common ownership” or
“absentee landlord” setup, lest we assume away the important centrist/decentrist-contest
that is at the heart of this paper. We replace either assumption by dividing urban residents
in two resident classes, resident landlords and tenants. Each landlord owns one unit of
housing (an “apartment”) that he resides in himself as well as another apartment that he
rents out. These two apartments, to be sure, do not need to locate in the same ring.*

Realistically, information on any given landlord’s two individual properties must be treated
as private. And so we cannot say whether this landlord is a centrist or a decentrist.
But (unknown) match matrix X = (x;;) collects the frequencies with which the various
possible matches between landlords and tenants occur, with row ¢ (column j) indicating the
landlord’s (tenant’s) location. Centrists (decentrists) are those landlords whose average
property is closer to (further away from) the center than half the distance from the CBD
to the city boundary, 7/2. Hence centrists are those for whom

(ri+m)/2 < 7/2 (2)

*We assume a is continuous in 7. As h is (differentiable and hence) continuous in r, so is f.

3We will also refer to f(r;) or f(ri)s as the city’s shape, following terminology introduced in
Arnott/Stiglitz (1981).

“Surely there are many other, often more complex, ways to introduce (i) resident landlords with their
(ii) tenants into the city.



or, equivalently, i + j — 1 < n.> An analogous condition applies to decentrists.®

Matching. The previous inequality suggests that centrists (decentrists) are to be associ-
ated with entries of X that are located strictly above (below) its counter diagonal, i.e. the
diagonal that stretches from X’s bottom left corner to its top right one. Moreover, being
a centrist (or decentrist) does not depend on which apartment is the owner-occupied one,
i or 5. We may conveniently suggest that landlords always occupy the ring that is closer
to the city center. And so with i < j, X becomes upper triangular. Now, to capture
the overall number of households inhabiting ring 7 we need to sum over all of X’s entries
in both, row ¢ and column 4. The resulting sum must equal ring i’s available stock of
apartments, b;. And so ring i’s housing constraint reads >°7_; (zi; + ;) = bi.

Linear Program. Summing over all centrist-related entries in X gives Z;‘;ll ";;{ Tij,

the true, yet unknown, number of centrists, [¢. Contrast this with the smallest number of
centrists conceivable, [°. That latter number bounds the true number of centrists [¢ from
below. To identify [, we minimize the number of centrists given ring housing constraints
and the non-negativity requirements x;; > 0. This translates into the following linear

program
n—1 n—i n
I%ljn zjl 2:1 xij st Zl(:cw +z5) = b (i =1,...,n)
i=1 j= j=

analysis of which is the focus of the next two sections.

3 The Minimum Share of Centrists, in Two Specific Cities

We run two eight-ring city examples on how to solve the linear program (3) next. These
are examples to offer some intuition on how a feasible, and even optimal, solution to linear
program (3) plays out. But in fact they are much more than just examples. They motivate
a trial solution that later will generalize to any given city.

Example City 1. Our first city has “city shape” b = (38, 36, 30, 10, 12, 8, 4, 2). To this
city, matrix X; in (4), in highlighting eight non-zero entries, suggests one basic feasible
solution.” We briefly illustrate feasibility. Adding up all entries in row 1 and column 1,
for instance, gives 20 + 18 = 38 or by, while adding up all entries in row 7 (consisting of
zeros only) and column 7 gives just 044 or by. Our feasible solution here displays one
feature that we might expect of an optimal solution, notably that (4) assigns the maximum
possible weight to entries on the counterdiagonal (in red on screen). This forces centrists’
numbers down as best as we can. We get x15 = min{b;,bg} = 2. Similarly, zo7 = 4,
I36 = 8 and T45 = 10.

Put differently, whenever possible we allocate a peripheral apartment in some given outer
ring j, 5 < j < 8, to a proprietor who owns her other, second apartment in corresponding

This follows from assuming that residents in ring ¢ commute distance (i — 0.5)7/n.

5Note that even as decentrists have properties closer to the city extremes, “extremists” probably is not
a better term.

"Here, as well as in all other match matrices below, entries with no explicit number attached equal zero.



inner ring 9 — j. This must be a necessary property of a centrist-minimizing allocation.
(Suppose that X violated this property, i.e. suppose z1g = 1 < 2 = min{38,2}. Since
there are no apartments, anywhere, capable of successfully turning a landlord in ring
1 — someone who would otherwise be a centrist — into a decentrist, an opportunity to
reduce centrists would have been irrevocably wasted.) At the same time, of course, not all
apartments in a given peripheral ring 7 may be assignable to a landlord in corresponding
ring n — j 4+ 1. In ring j = 5, for example, only 10 out of 12 apartments are.

There are (b; —bg) = 36 apartments in ring 1 still waiting to be allocated, as are (by—by) =
32 apartments in ring 2 and (b3 — bg) = 22 apartments in ring 3. We apportion these
remainders to landlords owning both their properties within the same ring. Since any
match on the main diagonal accounts for two apartments, we set x11 = (b1 — bg)/2 = 18,
x99 = (bg — b7)/2 = 16 and x33 = (b3 — bg)/2 = 11 (all blue on screen). Note that x44 = 0,
given that x45 = 10 already and that row 4 and column 4 must add up to by = 10. It
remains to balance housing in ring 5, by setting x5 to 1 (brown on screen). — Now,
invoking the simplex algorithm would reveal that the solution set out in (4) above not
just is feasible but also: optimal.® Instead of going through these details here, we offer a
systematic treatment below (in the following section).

18 0 0 0 O O 0 2
16 0 0 O 0 4 0
11 0 0 8 0 O
" R 0
0 0 0 0
0 0
0

We conclude that the trial number of centrists suggested by (4) also is the minimum
number of centrists given the specific city shape b in hand. Adding up these centrists
is simple enough. We merely need to collect the few non-zero entries found above the
counterdiagonal. These are conveniently located on the upper half of the main diagonal
(blue on screen). This gives 37_;(by — bg_;)/2 or 45 minimum centrists. Minimum cen-
trists’ share in city population becomes 45/140. Computing minimum centrists provides
valuable information here. It is not possible for the true number of centrists to fall short
of 45. But it is quite possible — if not utterly likely — for the true number of centrists to
surpass 45. Of course, the latter likely occurs should true matches deviate from one of the
optimal solutions.

Example City 2. Our second example city exhibits housing stocks described by “city
shape” b = (38, 14, 30, 10, 12, 8, 26, 2). We take an important step towards generalization
by introducing the concept of ring difference d; now, where 6; = b; — b, +-1—; is the number
of apartments in “leading” ring ¢ minus that in “lagging” or “antagonist” ring n + 1 — 4.
It is defined for 1 < ¢ < 4. In our second example city, d; is positive for ¢ equal to 1 or 3
(since there we have a “surplus”) and it is negative if ¢ equals 2 or 4 (because then there is

81t is not, however, a unique optimal solution. For example, letting any landlord trade apartments with
her or his tenant would generate another optimal solution.



a “deficit”). Contrast this with our first example city, where all first three ring differences
are positive.

True to our strategy of emphasizing the counterdiagonal, feasible solution X3 in (5) assigns
as many apartments as possible in lagging rings to owners in corresponding leading rings.
And because we have a surplus in rings 1 and 3, for these rings this works just fine.
All apartments in rings 8 and 6 can be assigned to landlords living in rings 1 and 3,
respectively. And while this works less well for apartments in lagging rings 5 and 7,
remaining apartments are not always lost on us. Ring 2’s deficit (of —(by — b7) = 12),
for instance, we may “save up for”, or “post to”, the next best successive ring boasting a
surplus. In our example, this is ring 3 (where b3 — bg = 22). The 12 apartments reflecting
ring 2’s deficit can valuably be employed to offset the better part of ring 3’s surplus.

And so we set entry xz37 in Xy to by — by, or 12 (green). Intuitively, the 12 ring 7-
apartments not assignable to ring 2-landlords now are assigned to landlords in ring 3, to
at least turn those off centrism. Note that the same is not possible to do with the ring
deficit arising in ring 4. There simply are no later rings. — Everything else parallels our
discussion of the first example. We balance the first three rings’ housing constraints by
setting x11 = (bl — bg)/2 =18, x990 = 0 and xz33 = (bg — (bﬁ + (b7 — bg)))/2 = 5. Again,
moreover, the basic feasible solution, set out in (5), also is the optimal one. Minimum
centrists are found to sum to 23, if only to see their share in the overall total attain a mere
23/140.

18 0 0 0 0 0 0 2
000 0 0 14 0
5 0 0 8 0

Xz - "0 0 ®
0 0 0 O
0 0
0

Review. What can be learned from these two examples? We have seen that in both cities
minimum centrists may be written as the cumulative sum of the first three ring differences,
3 (b1 —by_;)/2. This is true even as & is positive in the first example city while negative
in the second. But why does it make sense to include 5 in either example? The answer is
this: On the one hand, including d2/2 in the cumulative sum when positive acknowledges
the fact that (by — b7)/2 landlords in ring 2 cannot be turned away from centrism. On
the other hand, including d3/2 in the cumulative sum when negative acknowledges the fact
that (by — b2)/2 landlords in ring 3 can (be turned off centrism).

We must also wonder about why 2, (b — bg_;)/2 excludes d4/2. In particular, why is
negative d4/2 not included in the second city’s cumulative sum when negative dy/2 is?
Following our previous intuition, there is no need to “save” ring 5 apartments for later
because there are no later surpluses to “swipe away”. The only remaining ring that could
possibly feature a centrist landlord is ring 4. Yet here d4’s negative sign indicates that
the planner can already afford each landlord in ring 4 a ring 5-apartment that successfully



counters that landlord’s initial impulse to “go centrist”. And with no further centrists to
collect in the fourth ring, our cumulative sum should: stop short of it.

Tentative Ideas. Two ideas emerge from this: (i) Minimum centrists can be represented
as a cumulative sum of successive ring differences. (ii) Successive ring differences should
enter that cumulative sum if they are positive. And they should even enter the cumulative
sum if they are negative, as long as they can help “wipe out” subsequent positive ones.
Negative ring differences should be included if and only if they are followed by positive ones
at least equal in size. I.e., the cumulative sum should include successive ring differences as
long as this helps raise the cumulative sum. Equivalently, to minimize centrists we must
mazximize the cumulative sum of ring differences. We will return to this equivalence in a
moment, when generalizing our examples (in the next section).

4 The Minimum Share of Centrists, Anywhere

Primal vs. Dual Program. We allow for any n x 1 vector of ring housing stocks b =
(b1,...,by) now, except for ruling out any b; to equal zero. We then put the corresponding
linear program (3) into standard form. We first stack all n columns of X into one long
(n? x 1) vector z. This gives @’ = (Z11,...,%1n, -+ ,Tnly--->Tnpn). To address the
objective function in (3) in matrix notation, let ¢; equal an n x 1 vector consisting of ones
only except for the last ¢ entries, which are zero instead. For example, c3 is a list of n — 3
ones followed by three zeros, i.e. ¢4 = (1,...,1,0,0,0). Define an n? x 1 list of weights c
/

by setting ¢/ = (c;, . ..,c,). Then our objective function S 7=} Z’;:_ll x;; can be cast as the

product ¢'z.

Next, let 7; denote an n x 1 vector featuring 2 in its i-th row and 1 in all other rows.
For example, 75 = (1,2,1,...,1). Moreover, let J; denote what becomes of the n x n
identity matrix once row ¢ has been replaced with 7/. Then the coeflicient matrix A is
A= (Ji, ... ,Jy); it is of dimensions n x n?. The tableau in Table (1) illustrates A in its
bottom left part. This table also indicates our specific vector of objective function weights

c (in its first row) as well as the vector of ring housing stocks b (last column).”?

1111 1 0/....1 0 00 00

2 1 1 1 11 ...]1000 0 0]b
01 00 0 0r...0 1 0 O 0 0]b
0010 00,....00 10 0 0]bs

o :

0000 ...10,...,0 oo 10| by

0 0 0O 1v...'1 111 ... 1 2|b,

Table 1: Matrix A, objective function weights ¢ and housing stocks b

With this extra notation in hand, linear program (3) may equivalently be stated as min, '«
subject to Ax = b and = > 0, where the equality constraints may also be read off Table

9 As inspection of A makes clear, ours is not a transportation problem (e.g., as defined in Hadley (1963)).



(1)’s rows. This program’s dual is max, y'b such that y'A < ¢/, where y is the dual’s (nx 1)
vector of unknowns, ¥’ = (y1, ... ,yn). Table (1) also indicates the dual’s constraints;
these can be read off its columns. For instance, the constraint complementary to x1; being
strictly positive simply is 2y; < ¢11 = 1 (see first column in Table (1)).

Rather than immediately analyze the general case, we focus on a seemingly special case
first. This case allows us to best connect with the principles that emerge from our discus-
sion of the two example cities (section 3). To address this special case, let us introduce the
partial cumulative sum A(7) = Z;-:l d;/2. This sum cumulates successive ring differences
d; up to ring ¢, where of course ¢ < n/2. And let index i* be the index that maximizes
this cumulative sum, i.e.

i = arg mZaX Z(bﬂ — bn+1_j)/2. (6)
j=1

Our point of departure on the way to the fully general solution is a city for which (i)
A(7*) > 0 and (ii) all ring differences ¢; are negative except when ¢ = i*, when d;« > 0.

Trial Solution. We set out a basic feasible solution to the primal problem next. Table
(2) shows X in tabular form and may be a useful reference as we go along. Again, entries
of X never addressed are zero. Moreover, also note the formal resemblance between Table
(2) on the one hand and matrices X; and X5 on the other. Now, we begin by considering
the elements on the counterdiagonal of match matrix X. Here we set (red on screen)

Tip1—i = min{b;, bpy1-i} (i=1,...,n/2). (7)

Given our sign assumptions regarding the d;, this entails setting all entries 1, “up” to
Tix—1p+2-i*, and again from xj«1pn—ix 10 Ty 2 n/o41, equal to the leading ring’s stock, b;.
Only 2+ n41—i+ becomes the lagging ring’s stock, b,,11—;<. Note how this assignment makes
as many owners of property in leading rings (voters who otherwise likely are centrists) as
possible disavow centrism.

Moreover, set (green on screen)
xi*,n—&-l—i = (bn+l—i — bz) (Z = 1, e ,i* — 1) (8)

Note that the expressions on the r.h.s. represent ring deficits. Deficits originating in rings
prior to i* are posted to leading ring *, as the earliest next ring offering up an excess.
“Apartment savings” originating in rings up to ¢* then are matched up with apartments in
ring ¢*. This generalizes how we proceeded earlier when setting x37 equal to 12 in example
city 2.

Next, let (blue on screen)

i*—1

Tixix = (bz’* — (bngpr—ir + D (bps1—k — bk)))/27 (9)

k=1

or A(i*). At first sight nothing seems to preclude x;+; from being strictly negative,
in contradiction to primal variables’ non-negativity constraints. However, recall that ¢*
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771/2 0 Lo j2ny2+1
n/2+1 T ot o
n—1* bt
0
0
n 0

Table 2: Non-Zero Elements in Basic Feasible Solution

maximizes the cumulative sum of ring differences. And so Z;;l 0;/2 > 0, i.e. a non-
negative number. And note that this latter number just coincides with the r.h.s. of
(9). Put yet differently, ring excess d;= is more than sufficient to offset the ring deficits
0, associated with, and inherited from, all the rings prior to ¢*. And so x;+;+ really is
non-negative.

At last we set (brown on screen)
Tnil—imtl—i = (bny1—i — 0))/2  (i=4"+1,...,n/2). (10)

Ring deficits originating in rings following ¢* are relegated to main diagonal elements
below the counterdiagonal, to the desirable effect of contributing nothing to the number
of centrists. Note how equations (7), (8), (9) and (10) set out a feasible solution of the
primal.

Complementary Slackness. We invoke complementary slackness between the primal
and the dual. For ¢ = 1,...,n/2, entries on the counterdiagonal z;,1—; are strictly
positive (see (7)), as is the main diagonal element z;« (see (9)). By complementary
slackness, the corresponding constraints of the dual — read off the corresponding columns
of Table (1) — must be met with equality, and so

Yi = —Ynt1—i (Z = 17"'777‘/2) and Yix = 1/2 (11)
These equations specify the weights on ring housing stocks b; in the dual’s objective.

Fori=1,...,i"—1, entries x;« ,, 41—, are strictly positive, too (see (8)). Again, by comple-
mentary slackness, corresponding constraint inequalities in the dual become binding. And
so, according to Table (1), y;+ = —ynt1—;. Combining this with y,4+1-; = —y; and the
fact that y;~ = 1/2 (see (11)) gives the first set of equations in (12). At last we make use



of equations (10). For i = ¢* + 1,...,n/2, constraint (in)equalities translate into y; = 0.
Joint with the first set of equations in (11), this in turn implies the second set of equations
in (12):

yi =1/2 (i=1,...,i* —=1) and gy =0 (i=i"+1,...,n—1i%. (12)

Table (3) collects the full solution to equations (11) and (12), denoted y and easily shown
to be feasible, too.

|
|

i 1]l [+ = n—i"+1] ... | n |
i [12]12]12] o Jo] o | -1/2 [-1/2]-1/2]

Y|

Table 3: The dual’s optimal solution

Basic Feasible Solution is Optimal. Let us now put together feasibility and comple-
mentary slackness, using standard reasoning in linear programming (Bertsimas/Tsitsiklis
(1997)). First, feasibility of Z and y implies b = Az and ¢’ A < ¢, respectively, and hence
y'b =y (Az) = (JA)x < dz. Second, complementary slackness implies (yA — )z = 0
or (A)x = dz. And so we may conclude that y’b = ¢’z. This in turn implies that ¢z
equals minimum centrists, and hence that z solves (3). Of course, if z is optimal, then so
is y, justifying Table (3)’s title.

We compute the objective function values for primal and dual, providing a check on
optimality of & and y as well as, of course, the desired minimum number of centrists
itself. On the one hand, summing over all entries above the counter diagonal the objective
function value in the primal gives x;+; as on the r.h.s. of equation (9). But then:

I = A@") = max Y (bj — bns1-5)/2. (13)
j=1

On the other hand, computing the sum of ring stocks using the optimal weights in (11) and
(12) yields the very same formula, i.e. Z?:l(bj — bp41—5)/2. This formula represents the
optimal value of both primal and dual. Thus it also represents the minimum conceivable
number of centrists. We briefly pause to appreciate the formula’s generality: the greatest
cumulative ring difference gives a universal closed form solution for minimum centrists. It
provides an observer of an arbitrary given city with a prediction of centrists’ minimum.

Our proof is for a city whose ring differences, with the exception of d;+, are all negative (also
see the first two rows in Table (4) in the Appendix). The Appendix shows how the proof
quickly generalizes. Subsections 8.2 through 8.4 show that our results in essence remain
unchanged as some, or even all, ring differences exhibit an arbitrary sign. Formula (13)
remains valid throughout. This is quite straightforward since also accounting for positive
ring differences (Appendix) is simpler than accounting for negative ones (this section):
witness solution X; as opposed to X (in section 3). Now, translating minimum centrist
numbers in formula (13) into minimum centrists’ share in all landlords, by dividing A(:*)
by s/2, gives the following variant of this result:

10



Proposition 1: (Greatest Cumulative Ring Difference and Centrists)

Centrists’ minimum conceivable share of the landlord population, A, is given by the great-
est cumulative ring difference, \° = max; 335y (bj/s — bny1-j/5).

5 Centrists vs. Decentrists

Minimum Decentrists. We bring in decentrists now. Intuitively, where before we
have used b,y1—; to “swipe away” or “swamp” potential centrists in ¢ (as best as we
could), conversely we now use b; to “swamp” decentrists in n + 1 — i (as best as we
can). Applying a proof similar to that in section 4 (omitted for brevity), we find that
minimum decentrists correspond to: minus the least cumulative ring difference. That is,
if i** = arg max; Z;":l(_(bj — bnt1-4))/2, then minimum decentrists [? are equal to

1= A = —min 3 (b — burig)/2) (14
j=1

Translating this number into a share gives

Proposition 2: (Least Cumulative Ring Difference and Decentrists)

Decentrists’ minimum conceivable share of the landlord population, 2 s given by minus
the least cumulative ring difference, A* = — min; >y (bj/s —bpy1-j/s).

Upper Bounds. We quickly turn lower bounds in Propositions 1 and 2 into corresponding
upper bounds. Subtracting centrists from overall landlord population s/2 gives the sum of
decentrists and indifferent landlords. This in turn is the sum of all elements of X strictly
below or on the counter diagonal. The following linear program looks for the maximum
sum of decentrists/indifferents:

n—1 n—1i

max (8/2 - -Tij) s.t. Z (iL‘Z‘j + iL'ji) = b (Z =1,... ,n)
j=1

Ha.
I 1 j=1

-
Il
.
Il

Tij > 0 (i,j:L...,n). (15)

Comparing linear programs, clearly the maximizer to (15) coincides with the minimizer
to (3). But this implies that s/2 — [° is the maximum conceivable number of decen-
trists/indifferents. And so s/2 — [° is an upper bound to decentrists only (Proposition,
Part (ii)). A similar argument suggests that s/2 — [
decentrists, is an upper bound to centrists (Proposition 3, Part (i)).

, where [? is the minimum number of

Proposition 3: (Upper Bounds on Centrists and Decentrists)

(i) X is bounded from above by 1 — A%. (i) X% is bounded from above by 1 — A°.

11



6 Conclusions

The paper provides (novel) estimators of centrists and decentrists. These estimators are
highly general, and are simple to compute from easily observable data for any city. We
suggest that conflicts between centrists and decentrists could help explain other contested
policies beyond decentralization. Examples include carbon taxation, rationing central city
land, urban growth boundaries, decentralizing retail, tightening building height limits,
implementing minimum lot size, or introducing road tolls. To these policy fields, the
paper’s greatest lower bounds on centrists and decentrists are applicable, too.
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8 Appendix

8.1 Cumulative Ring Difference

We introduce some extra notation first. Consider the cumulative sum A(h), for some h
between 1 and n/2. Suppose A(h) is preceded by some other cumulative sum A(g) that
is greater than it, i.e. A(h) < A(g) for g < h.'? Borrowing terminology established in the
context of the “Rising Sun Lemma” (Spivak (1994)), then we will say that the cumulative
sum up to, and including, ring difference h is “in the shadow of” the cumulative sum
up to, and including, ring difference ¢g.!'' Of course, there will be rings that are never
overshadowed. Among those, ring i*, defined in equation (6), is the one exhibiting the
greatest cumulative sum, A(:*). For the two numerical cities in section 3, to give an
example, ¢* = 3.

8.2 Not All Ring Differences Negative

In the main text we took the first step towards a fully general analysis. Our point of
departure was the city of the type spelt out in Table (4). The table header has the
ring difference index 4, the second row provides ring difference d;’s sign, and the third row
indicates whether or not the corresponding cumulative ring difference A(7) is overshadowed
(e is a suggestive shorthand) or not (o). As mentioned above, in this city all ring differences
both prior to ¢* and beyond ¢* 4+ 1 are negative and overshadowed.

K 12 ]3] -] i+l +2] ... [n/2]
5 - -1-1-1 - |+ - - | -1 -
A(1) e o | o | o . o ° ° ° °

Table 4: A Parametric City

Nothing of substance changes if one (or more) of those shadow differences is (are) positive,
rather than negative. To see this we turn to the city set out in Table (5) below, with the
second ring the one ring to have flipped its sign. We assume that everything else remains

the same, and so A(2) < A(0) while i* keeps maximizing A(7).!2
i 123 . [&F-1]i[d+1]i+2].. [n/2]
0; i e — + — — - | -
A(i) | o | o | @ ° . o . ° ° °

Table 5: Negative and Positive Ring Differences

10We define A(0) = 0. Even the first ring may be overshadowed, by A(0), if §; < 0.

11n our first example city, the cumulative ring difference at 4 is overshadowed (by the cumulative ring
difference at 3, say), while in the second example city cumulative ring differences at 2 and 4 are (by
cumulative ring differences 1 and 3, respectively, for example).

2These assumptions are not restrictive. First, if A(0) < A(2), we would have to consider alternating
spells of ring differences in the shadow and not in the shadow. This case is considered shortly. And second,
if ¢* shifted due to 2 flipping its sign, nothing would change in the argument below as long as 2 < i*.
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We introduce the following three, i.e. not numerous, changes to the primal’s solution: (i)
Entry 2 ,—1 ceases to be bg and turns into b, instead. (ii) Entry x, becomes (by—b,_1),
replacing the zero it was before. (iii) Entry x;« , drops from ring difference (b, —b1) to the
“difference of ring differences” (b, — b1) — (b2 — b,—1). These changes maintain feasibility,
as is easily checked by consulting the housing constraints of the four rings affected.

Note that z;«;+ is not among the entries changed. This particular entry continues to equal
A(7*)/2. Since this entry is the only one to enter the primal objective’s optimal value,
our formula does not change either. Note the role of ring 2 still being overshadowed
here. While 5 is positive, it is not sufficiently so to offset the negative d; that precedes
it. And hence (b, — b1) — (b2 — bp—1) or x;, indeed is strictly positive. Now let us
check the implied changes for the dual. Since 2 ,_1 and ;- , continue to exceed zero,
complementary constraints of the dual continue to be binding. And since x9, now also
exceeds zero, the corresponding dual constraint becomes binding, so that yo = —y,,. This
we knew before, and so this extra equation is redundant. We conclude that formula
A(7*)/2 continues to apply. Of course, the objective’s numerical value changes.

Exploring a sign change for any other ring difference, or for additional ring differences,
proceeds along similar lines. That is, formula A(i*)/2 continues to capture the minimum
number of centrists whatever the signs of the ring differences in rings up to ¢*, as long as
these ring differences are overshadowed.

8.3 Not All Ring Differences Overshadowed

What (if anything) changes if one (or more) of the ring differences are not overshadowed?
Let us allow for the possibility that not all ring differences prior to ¢* are overshadowed,
as in Table (6). Let all ring differences from 1 up to i — 1 be in the shadow of ring 0, and
all ring differences between ' + 1 and i* — 1 be overshadowed by 4’, so that ¢* is not in the
shadow. One optimal feasible solution assigns 22»/:1 /2 to zjyr, and Z;’*:i’—&-l 0;/2 to T,
and zero to any other element above the counterdiagonal. The corresponding minimum
number of centrists becomes the sum of these two (only non-zero) terms. But this is just
our familiar A(i*)/2. Adding extra spells of ring differences in the shadow adds nothing
of substance here.

Table 6: Alternating Spells of Shadow and Light

At last we turn to the question of what happens if any ring differences following i* + 1
(rather than preceding i*) exhibit a positive sign. Recall that, by definition of i*, ring
differences beyond i* must be overshadowed. Let one of these ring differences be positive,
rather than negative, i.e. i* 4+ 2 say. Being in the shadow of i*, the excess arising in ring
difference ¢* + 2 is “swamped” by the deficit in the previous ring difference at ¢* +1. Once
more, there is no change in the number of minimum centrists.
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