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Abstract

Synthetic cannabinoids represent the largest class of designer drugs. They pose a chal-
lenge on forensic laboratories as new substances emerge quickly. Classical approaches
in forensic drug analysis rely on using mass spectrometry to gather information on the
substance at hand and query databases of known illicit drugs with this information. For
novel substances, this is not possible because there are no entries linked to them. Thus,
forensic laboratories are in need of a way to check if mass spectrometry data potentially

contains measurements of synthetic cannabinoids.

This thesis tackles the challenge by developing a method to trace potential synthetic
cannabinoids in mass spectrometry data. The approach bases on matching mass spec-
tra with a candidate database consisting of generated virtual molecules which fit the
description of synthetic cannabinoids and their fragments which were predicted based
on a fragmentation model built on known synthetic cannabinoids. To test and make
the method accessible for users, an analysis tool in the form of a web application was

implemented.

The implemented method shows good results. In an evaluation where a database consist-
ing only of generated compounds and fragments was used, 86.8% of synthetic cannabi-
noids were identified correctly in the matching process. Only 8 out of 53,629 negative

spectra were wrongfully classified as positive, resulting in a specificity of 99.985%.



Zusammenfassung

Synthetische Cannabinoide stellen die grofite Gruppe von Designerdrogen dar. Sie
stellen forensische Labore vor Herausforderungen, da laufend neue Substanzen entste-
hen. Forensische Drogenanalysen verwenden Massenspektrometrie, um Informationen
zu den vorliegenden Substanzen zu ermitteln. Mithilfe dieser Informationen werden
Datenbanken abgefragt, die bekannte illegale Drogen enthalten. Dieser Ansatz liefert
bei neu auftretenden Substanzen keine Treffer, da keine zugehorigen Eintrdge in den
Datenbanken vorhanden sind. Deshalb brauchen forensische Labore Losungen, um her-
auszufinden, ob Massenspektrometriedaten moglicherweise synthetische Cannabinoide

enthalten.

Diese Arbeit entwickelt eine Methode, die mogliche synthetische Cannabinoide in Massen-
spektrometriedaten feststellt. Dafiir wird zunéchst eine Kandidaten-Datenbank erstellt,
die aus generierten virtuellen Molekiilen besteht. Diese Molekiile entsprechen der Beschrei-
bung von synthetischen Cannabinoiden. Aulerdem werden Fragmente zu den Molekiilen
generiert. Diese beruhen auf einem Modell, das anhand von bekannten synthetischen
Cannabinoiden erstellt wurde. Um die Analyse fiir Benutzer zugénglich zu machen,

wurde ein Web-Tool entwickelt.

Die Methode zeigt gute Ergebnisse. Fiir die Evaluierung wurden nur generierte Molekiile
und Fragmente verwendet. 86,6% der synthetischen Cannabinoide wurden als solche
erkannt. Nur 8 der 53.629 Negativ-Spektren wurden falschlicherweise als synthetische

Cannabinoide klassifiziert, was einer Spezifizitat von 99,985% entspricht.
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1 Introduction

Synthetic cannabinoids are substances which are supposed to mimic the effects of Tetrahy-
drocannabinol (THC), the psychoactive component of cannabis [Auw+21, p.2]. Initially,
the development of synthetic cannabinoids focused on its usage as a medicine. How-
ever, in the mid-2000s, synthetic cannabinoids emerged as an ingredient of the product
“Spice”. This was thought of as a legal alternative to natural cannabis. Since then,
a number of substances have been developed and brought to market by clandestine
laboratories [Auw+21, p.6].

There is a number of problems in association with synthetic cannabinoids. One is the
unpredictability of the effects on the user as there are no scientific tests on short- or
long-term side effects [Auw+21, p.21]. Another problem is the high potency of syn-
thetic cannabinoids due to them being designed to fully bind to cannabinoid-receptors
in the body [Auw-+21, p.21]. This means that synthetic cannabinoids are often much
stronger than natural cannabis. This presents itself in stronger and more frequent un-
wanted effects after consumption compared to cannabis. These effects include hallu-
cinations, panic attacks, or psychosis [Auw+21, p.31]. There are not only mental ef-
fects, also physical problems can arise from the consumption of synthetic cannabinoids.
Heart problems and kidney damages were linked to the consumption of certain synthetic
cannabinoids [Auw+21, p.25-26]. Even death cases are reported where the consumption

of synthetic cannabinoids were assumed to be the main cause [Auw+21, p.26-27].

As an answer to the increasing emergence of synthetic cannabinoids, countries have put
efforts into controlling them [Auw+21, p.9]. This led to the black market producers cre-
ating new substances which are structurally slightly different to existing ones. Obviously,
countries and other institutions have reacted to this development. For example, the Fu-
ropean Monitoring Centre for Drugs and Drug Addiction (EMCDDA) implemented the

so-called EU Farly Warning System which not only monitors synthetic cannabinoids,
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but all so-called new psychoactive substances [DA21]. Its goal is to rapidly detect and

respond to substances newly discovered in the European Union.

However, forensic laboratories still face the challenge of detecting synthetic cannabinoids
in drug-analysis data, as there are potentially novel substances in the datasets. These
go unnoticed in the analysis due to them not being cxistent in substance databases.
Hence, they are in need of solutions which can indicate whether analysis data poten-
tially contains synthetic cannabinoids. The thesis at hand addresses this problem by
implementing a method which searches for potential synthetic cannabinoids in drug-
analysis data, to be more precise, mass-spectrometry data. The approach is based on
the generation of virtual molecules which fit to the description of synthetic cannabinoids
and their corresponding fragments arising in the mass-spectrometry process. This gen-
eration process uses knowledge from existing synthetic cannabinoids and builds rule-sets
on these observations. An analysis tool in the form of a web application then faciliates

the matching of mass-spectrometry data with the generated molecules and fragments.

This thesis enables forensic laboratories to spot potential synthetic cannabinoids, includ-
ing novel ones, in large mass-spectrometry datasets in a fast way. Thus, new synthetic
cannabinoids do no not go unnoticed in drug screenings. The developed approach can

be seen as an addition to measures currently in place to spot novel substances.

In the following, the structure of this thesis is elucidated. Chapter 2 explains the un-
derlying problem more detailed. Afterwards, important terms and concepts needed for
the understanding of the method are introduced in Chapter 3. This chapter also looks
at literature which discussed approaches similar to this thesis. Then, the implemented
method is presented in Chapter 4 and evaluated in Chapter 5. Chapter 6 gives a con-

clusion and looks at future applications.



2 Problem description

Forensic drug analysis works, roughly speaking, in the following way: A sample of blood,
urine, or hair sample from a patient is provided. This sample is then analyzed in a labra-
tory. A common technique for the analysis is liquid chromatography coupled with mass
spectrometry [KA12]. In this process, containing molecules are separated according to
their chemical properties. For each molecule, a mass spectrometer generates a so-called
mass spectrum. The remarkable thing about a mass spectrum is that it gives sufficient
information to conclude about the chemical structure of the substance at hand. This
process is also reproducible which means that the mass spectrum is a strong indicator
for a compound. Hence, there exist databases containing mass spectra of many known
molecules. Examples are the NIST mass spectral library and the Wiley Registry [SHB13,
p.3] An important stage in the drug screening is then finding the analyte molecule in

the spectral database by searching it with the acquired mass spectrum.

A limitation of this approach is the requirement that the substances to be found needs
to have an corresponding entry in the spectral database. This is especially a challenge
when dealing with designer drugs like the substance class this thesis focuses on, synthetic
cannabinoids. Clandestine laboratories develop and bring them to the market rapidly
and forensic laboratories always have to be up to date with latest developments. This is
a very challenging task. Substances new to the market are not in chemical databases and
thus not traceable. As there is also indication of a tendency to new and thus not legally
controlled products consumed more often than established ones [Fra+18, p.66], this
challenge becomes even harder. Hence, forensic labratories are in need of means to filter

mass spectrometry data for spectra potentially containing synthetic cannabinoids.

This thesis tackles this challenge and aims to enable forensic laboratories to spot novel

synthetic cannabinoids in mass-spectrometry data.



3 Foundations

This chapter introduces various terms and concepts that are used throughout the the-
sis. First, a short introduction of the representation of molecules in graphical and in
machine-readable form is given. The next section describes the class of molecules this
thesis focuses on: synthetic cannabinoids. Then two important chemical techniques for
finding information on a substance are introduced, namely chromatography and mass
spectrometry. After a general explanation of the functionality, there is an emphasis on
drug testing with the means of mass spectrometry and finding novel substances with a
mass spectrometer. The last section presents literature that aims to examine undiscov-
ered substances with data extracted from mass spectrometry, a task similar to the one

this thesis emphasizes on.

3.1 Molecules and Their Representation in

Cheminformatics

Molecules consist of atoms and chemical bonds. They arise from atoms building bonds
between one another by sharing electron pairs. When a molecule has atoms of more than
one element, it is also referred to as a compound. All organic molecules consist of only
a small number of elements. These are carbon (C), hydrogen (H), oxygen (O), nitrogen
(N), sulfur (S), phosphorus (P), silicon (Si), fluorine (F), chlorine (Cl), bromine (Br), and
iodine (I). Carbon plays an important role here, as carbon is capable of building carbon-
carbon bonds which makes huge carbon skeletons possible [SGI16, Section 2.1]. The first
property of a molecule that comes into mind is the elemental composition which names
the elements it contains. One step further comes the molecular formula, indicating how

many atoms of each element are present in the molecule [SGI16, Section 2.1]. A simple
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example for this is water. A water molecule consists of two hydrogen atoms and one
oxygen atom. Thus, its elemental composition is described by the elements hydrogen

and oxygen and its molecular formula is H5O.

The molecular formula gives the number of atoms of the different elements that are
present in the molecule, but holds no information on how these atoms are connected with
each other. Depending on the counts of the elements, a lot of different connectivities are
possible for the same molecular formula. Compounds with the same molecular formula,
but different arrangements of atoms are called isomers. To differentiate between these
isomers, you have to examine their structure, i.e. the description which atoms are
connected by chemical bonds. Knowing the structure is important, as isomers may have
very different chemical properties [SGI16, Section 2.1]. For the sake of completeness,
there are also molecules having the same structure, but different spatial arrangements.

These are called stereoisomers [SGI16, Section 2.1].

Several conventions in the symbolizing of molecule structures exist [SGI16, Section 2.1].
A very common one is displayed in Figure 1. It shows the molecular structure of aspirin.
As carbon and hydrogen are the most abundant elements in organic compounds, only
the skeletons of carbon bonds are drawn. Thus, at the end of each bond where no
element is displayed, a carbon atom is assumed. Carbon-hydrogen connections are also
omitted, as it can be assumed that each carbon atom has full bonding (i.e. four bonds)
and there are as many hydrogen atoms as required for that. Atoms of elements other

than carbon and hydrogen are always displayed.

0]

).

Figure 1: Molecular structure of aspirin (based on [Bio23b])

HO

Obviously, the representation shown in Figure 1 is not interpretable for computers in

this form. Thus, machine-readable representations of molecular structures are required.
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Various models representing molecules are mentioned in literature. Wigh, Goodman,
and Lapkin [WGL22, pp.2-3| differentiate between feature-based, computer learned,
chemical table, and string respresentations. The first two do not represent the com-
plete molecule structure, but rather exhibit its features. Chemical tables arrange the
contained atoms in x-,y-, and z-coordinates and depict the chemical bonds in a connec-
tion table. String-based representations include registry and structure-based systems.
Registry systems store relevant information of a molecule and give a unique ID to each
compound in their databases which eases communication. Examples for registry systems
are the CAS registry [Ser23] and PubChem [Bio23a].

A very prominent structure-based string respresentation is simplified molecular-input
line-entry system (SMILES) [Sys19b]. Although it is a relatively old standard, SMILES
is still widely used due to its simplicity and human readability [WGL22, p.4-5]. For
instance, the SMILES string for aspirin is CC(=0)OC1=CC=CC=C1C(=0)0O (the
structure is depicted in Figure 1). Atoms in SMILES strings are simply represented
by their atomic symbols. As in the notation in Figure 1, hydrogen is usually suppressed.
Single bonds between atoms are not symbolized in most cases, symbols being adjacent
imply that they have a single bond. However, double bonds are explicitly shown with
the symbol “=" and triple bonds are signaled with “#”. Rings are exprcssed by breaking
one bond in the ring and appending an identifiying integer to the opening and closing
atoms. In the example, the substring C1=CC=CC=C1 expresses the ring that is shown
in the right upper corner in Figure 1. Parentheses in the string indicate a branch point.
Looking at the example, after the first carbon-carbon bond, there are two branches: one
is the double bond to an oxygen atom and the other one is a single bond to another

oxygen atom. This is expressed by putting the =0 into parentheses.

A challenge when working with SMILES is its noncanonical nature which means that
there are many ways to build a SMILES string for a given molecule [LG07, p.6]. This is
especially a problem when searching for exact structures or substructures. A solution is
constructing a canonical SMILES string that is unique and thus comparable. This can
be achieved in the following way: the atoms of molecule graph are labelled canonically.
When two molecules are identical, this numbering is the same for both. In the next
step, the graph is traversed with a traversal algorithm like depth-first-search [OBo12,
p.3|. This results in the canonical SMILES strings. An example for a canonicalization is
proposed by Schneider, Sayle, and Landrum [SSL15]. This implementation is used in the

open-source cheminformatics application RDKit [RDK22¢|. Tt is based on a stable sort-
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ing algorithm in conjunction with invariants which consider stereochemistry [SSL15].

3.2 Synthetic Cannabinoids

Synthetic cannabinoids mimic the effects of the major psychoactive component of
cannabis, THC [Auw+21, p.2]. They represent the largest class of new psychoactive
substances which are substances having effects similar to illicit drugs, but are partially
not controlled by international drug conventions. An often used synonym for these sub-
stances is “legal highs” [DA22) p.38]. The first occurrences of synthetic cannabinoids
as legal highs are documented in 2004. They were sold as a product called “Spice” and
were first identified in 2008 [Auw+21, p.6].

The rising popularity of synthetic cannabinoids due to their legal image and the un-
dectability in the first years led to legal control in many countries [Fra+18, p.62]. Pro-
ducers of synthetic cannabinoids reacted by creating new substances that are structurally
slightly different compared to already known ones. A lot of novel substances emerged
that way. The European Drug Report of 2022 [DA22, p.38] records 224 new synthetic
cannabinoids since 2008. The rapid development of new synthetic cannabinoids poses a
challenge for forensic laboratories, as they always have to be up-to-date which substances

are currently in circulation and new to the market [Fra+18, p.62].

LINKED GROUP
LINKER

TAIL
CORE

Figure 2: The four building blocks of synthetic cannabinoids shown on the compound
AB-FUBINACA [DA17]

While the name “synthetic cannabinoids” suggests that the molecules are closely related

to cannabinoids occurrring in natural cannabis, many compounds of different substance
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classes mimic the effects of THC and thus classify as synthetic cannabinoids [Pul+22,
p.1]. Nonetheless, many of the synthetic cannabinoids recorded by the EMCDDA (91%
according to [Pul+22, p.3]) follow a certain pattern. Figure 2 illustrates the basic struc-
ture of these molecules; consisting of four building blocks: core, linker, linked group,
and tail. This observation leads to the assumption that many synthetic cannabinoids
were created with methods from combinatorial chemistry [Pul4-22, p.1]. This is an ap-
proach commonly used in drug discovery. The idea is to create chemical libraries of
molecules by systematically simulating the bonding between the building blocks. After
an assessment of biological properties, this can lead to a library of potential synthetic
cannabinoids [Pul+22, p.1].

3.3 Chromatography

Chromatography enables the separation of molecules in a mixture [Cogl6, p.156]. It is
based on two major components: a stationary phase which is solid or a liquid smeared
on a solid, and a mobile phase which is liquid or gaseous. The mixture is applied to
the stationary phase and moved with the aid of the mobile phase which is flowing over
the stationary phase. Due to the molecules in the mixture having different chemical
properties (e.g. molecular weight, absorption, and affinity), the time they stay in the
stationary phase varies [Cogl6, p.156]. The results of this process are the molecules
in separated form. There are two types of chromatography, the classification depends
on the mobile phase. Liquid chromatography indicates that the mobile phase is liquid
while gas chromatography means that it is gaseous. The choice which one to use depends
mainly on the mixture. Gas chromatography is mainly used for volatile liquids or solid
materials while liquid chromatography is utilized when trying to separate non-volatile
and thermal-unstable samples [Cogl16, p.156]. A result additional to the molecule is the
retention time thereof which shows how long it stayed in the chromatograph. It can
be an indicator for a specific compound. However, there can be significant variation
in retention time for compounds due to a number of reasons, e.g. minimally varying

configurations of the chromatograph [Doll4].
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3.4 Mass Spectrometry

Mass spectrometry is a technique with a wide range of applications in many scientific
fields, like material sciene, astronomy, biology, and medical research [Was15]. It is used
to analyze different characteristics of molecule, like their weight or formula. Another
possible application is the determination of unknown compounds by using their proper-
ties extracted from the mass spectrometry analysis and comparing them with compound
databases [Aha+22]. In this thesis, mass spectrometry is used to determine the mass
of analyte compounds and matching it with compounds in a generated database which
contains potential synthetic cannabinoids. While mass spectrometry gives qualified in-
formation for pure substances, data of mixtures is more difficult or even impossible to
interpret. Thus, when dealing with mixtures, chromatographs can be used as an inlet

system. Similar compounds are isolated and analyzed individually [WS07, p.43].

The following section introduces basic concepts in the context of mass spectrometry,
the components of a mass spectrometer, and the data mass spectrometers produce.
To illustrate the concepts, following example is used: a patient who has consumed
cannabis has to provide a hair sample. This sample is given into a solvent in order to
extract the substance. The resulting substance is then analyzed with a chromatograph
coupled with a mass spectrometer to potentially find traces of illicit drugs. As mentioned
in Section 3.2, the major psychoactive component in cannabis is THC (the molecule

structure is depicted in Figure 3).

Qe

OH

Figure 3: Structure of Tetrahydrocannabinol (based on [Bio23c])



Foundations
3.4.1 Basic Concepts

As the name suggests, mass spectrometry concerns itself with masses, more precisely
with the masses of isotopes. Isotopes are atoms of the same element (i.e. have the same
number of protons and electrons) with different numbers of neutrons. They have identical
chemical properties (i.e. the ability of a substance to react to form new substances), but

differ in mass, as neutrons add only mass and no charge [Dow04, p.4].

When measuring the exact masses of elements, you look at the monoisotopic mass
(MI). That is a term for the mass of the most abundant stable isotope of an element.
Consequently, the MI of a molecule is the sum of the Mls of all its elements [WS07,
p.273]. The unit of measurement when determining exact masses of atomic particles is
the unified atomic mass unit (u). One u is defined as one twelfth of the mass of the
most abundant stable carbon isotope 2C [LXB96, p.996]. A commonly used synonym
is dalton (Da) [WS07, p.273].

A mass spectrometer is unable to measure the masses of molecules directly. They can,
however, dectect ‘ons. While neutral molecules are unresponsive, charged analytes can
be controlled with electronic and magnetic fields [Dow04, p.10]. That means the analyte
molecule has to be charged (positively or negatively) in order to be recognized by the
mass spectrometer. You then have two factors: the mass and the charge. Thus, the mass-
to-charge ratio (m/z) of the ion is measured. The z stands for an absolute multiple of the
charge of an electron, so if an ion possesses two charges, z would be equal to 2 [Dow04,
p.10].

3.4.2 The Mass Spectrometer

Figure 4 shows the basic components of a mass spectrometer: The ion source, the m/z

analyzer (also commonly called mass analyzer), and the ion detector.

The ion source introduces the analyte molecule into the mass spectrometer and converts
it into a ionized form [Dow04, p.22]. There are many ionization techniques available.
What all of them have in common is the output, which are gas-phase ions of the ana-

lyte [NF15, p.6]. They differ in the physical state of the analyte, the internal energy that

10
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Molecule sample Ton Source w m/z w Detector
Analyzer

A

\

Computer
System

Figure 4: Schematic illustration of the components of a mass spectrometer (based
on [WS07, p.2])

is transferred into the molecule, and the type of ions generated in the process [NF15,
p.7]. A common technique which can be used for substances like THC, is electron ion-
1zation. This approach forces a collision of the sample molecule with an electron. A
requirement is that the analyte is already in gaseous phase. During the process, an
electron is added or removed. The result is a molecular ion, which is an ion with an
odd number of electrons and positive charge (in contrast to a molecule which has an
even number of electrons). If sufficient energy is put into the ionization, chemical bonds
in the molecular ions break. This reaction is called fragmentation. An illustration of a
fragmentation process is shown in Figure 5. The ions formed in this process are called
fragment ions. They mostly have lesser mass and the same charge as its precursor ion,
which is the ion it arises from. Secondary fragmentation is also possible, that means
fragment ions can be formed through the fragmentation of fragment ions [WS07, p.22—
23]. This is also apparent in Figure 5, where one path leads through four fragmentations.
An important fact to note is that the fragmentation pathway is a strong indicator for
a compound and also reproducible. Thus, it is often referred to as the “chemical fin-
gerprint” of a compound [WS07, p.317]. The fragmentation pathway shown in Figure 5

depicts what happens in the ion source when THC, the major psychoactive component

11
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of the cannabis the patient of our example consumed, is analyzed.

m/z 299 (100%)

_|+

m/z 246 (10%)

l - CH,

m/z 231 (55%)

m/z 271 (45%)

Figure 5: Fragmentation pathway of Tetrahydrocannabinol in mass spectrometry with
electron ionization [Cho+04]

After the gas-phase ions have been generated, they are forwarded to the mass analyzer.
The ions are present in the prior presented form. However, mass spectrometers only work
with masses and charges and give no structural information. The mass analyzer thus
separates the incoming ions according to their mass and charge, i.e. according to their
m/z value. The separation process is based on the fact that ions show characteristic
behavior in electric and magnetic fields [WS07, p.61]. Analogous to the ion sources,
there is a number of mass analyzers you can use, Niessen and Falck [NF15, pp.13-18]
differ between six types. The choice of a suitable mass analyzer is depending on a lot of

parameters, like m/z range, mass accuracy, and resolving power [WS07, pp.25-26].

The last component of a mass spectrometer is the ion detector. As input, the instrument
gets the separated ions from the mass analyzer. Koppenaal et al. [Kop405, p.419] call
detectors the “eyes” of mass spectrometry. The reason for this is their task which is to
register the incoming ions producing an electrical current that indicates the intensity of

the ion beam [Dow04, p.22]. There are different detectors, the type you use is heavily

12
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dependent on the spectrometer design, mainly on the mass analyzer [Kop+05, p.420].
The output of the detector is a mass spectrum which is explained further in the following

subsection.

3.4.3 The Mass Spectrum

As noted earlier, the result of the mass spectrometry process is a mass spectrum. An
often used depiction of a mass spectrum is a histogram. An example for this representa-
tion is shown in Figure 6. This is the mass spectrum that is generated when the analyte
molecule is THC, as it is the case in the example that was introduced in the beginning

of this section.

Dronabinol
MASS SPECTRUM
100

80
= ‘
£ 60
f aaf 4
& ]
£
g 40 -

0.0 100 200 300 400

Figure 6: Mass spectrum of Tetrahydrocannabinol [Cen]

The mass spectrum shows peaks which “represent the ions formed in the mass spectrom-
eter” [WS07, p.23|. The x-axis shows the m/z-values of the ions that were separated by
the m/z analyzer while the y-axis indicates the intensity of the peaks. The highest peak
(in Figure 6: peak with m/z-value of 299) in a mass spectrum is called base peak. The
intensity can either be an absolute or a relative value. The absolute intensity shows the

signal strength of the current for the corresponding ion. For the relative intensity you

13
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normalize the absolute intensity in such a way that the base peaks equals 100% [WS07,
p.23]. The base peak in the mass spectrum shown in Figure 6 corresponds with the

fragment in the upper right corner in Figure 3.

When looking at mass spectra, one has to consider a few metrics describing the mass
spectrometer to assess the data. A very important metric is the mass accuracy which is
calculated from the exact mass and the accurate mass. The exact mass is the theoretical
m/z of an ion and the accurate mass describes the “experimentally determined m/z”
which was measured in the mass spectrometer. The absolute mass accuracy is given as

the error function accurate — exact (result is given in mu). You can also calculate a

accurate—ezxact % 1 06
exact

(ppm)) [NF15, p.4]. Thus, the mass accuracy describes how exact a mass spectrometer

relative error with the formula (result is given in parts per million
can measure the m/z of an ion. Another metric is the mass resolution. It shows the
ability of a mass spectrometer how well it can differentiate between ions of almost iden-
tical mass [WB20, p.1747|. High-resolution mass spectrometry enables the differentation

of peaks that have identical m/z up to several decimal places.

3.5 Analysis of Synthetic Cannabinoids

Section 3.4 introduced basic concepts and components of mass spectrometry with the
aid of the example THC. In this example, gas chromatography in conjunction with
electron ionization is used. This approach is not suitable for synthetic cannabinoids. In
this context, liquid chromatography in conjunction with electrospray ionization proved
to be a suitable tool [KA12]. Next to the fact that liquid chromatography instead of
gas chromatography is used, other factors are slightly different in the process. The
molecules introduced by the chromatograph are not bombarded with electrons, but a
strong electric field is created [BM12, p.3]. This causes the sample solution to disperse
into charged aerosol droplets. These droplets are then evaporated which result in gas-
phase ions. In contrast to electron ionization, these ions remain intact and do not
undergo fragmentation [BM12, p.3]. This has the advantage that the molecular weight
can be determined very precisely. However, structural information can not be concluded.
To get this additional information, collision-induced dissociation is performed [BM12,
p.18]. The molecular ion is selected from the electrospray ionization results. This ion

is also called precursor ion [BM12, p.18]. The internal energy of the precursor ion is
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then increased which results in fragmentation. Results of electrospray ionization mass
spectrometry thus include the molecular weight and the mass spectrum. Two sequential
mass analyzers are needed in this process, one after the electrospray ionization and
one after the collision-induced dissociation. Thus, such methods are also referred to as

tandem mass spectrometry.

3.6 ldentification of Drugs with Mass Spectrometry

Mass spectrometry plays an important role in drug testing and identification. Harper,
Powell, and Pijl [HPP17, p.2] describe mass spectrometry as the drug testing technique
that identifies a substance most accurately and call it the “gold standard in forensic drug
analysis”. Drug testing with mass spectrometry can be seen as an analytical application
where you identify “known unknowns” [NF15, p.32]. This is a term for the analysis of
a unknown substance where the goal is to find the substance at hand in literature or
in databases. The approach of how to find the substance in a database depends on the
ionization technique. When using a technique like electron ionization or electrospray ion-
ization in conjunction with tandem mass spectrometry, the analyte molecule fragments.
As the fragmentation pattern of a molecule is known, you can search for the molecule
species by using the generated mass spectrum to match structures of known molecules
in a spectral database. This approach has proven to work well for small molecules.
Most illicit drugs, notably synthetic cannabinoids, classify as small molecules [HPP17,
p.2|. As in many other application fields, chromatography techniques are performed on
the analyte before the mass spectrometry process to separate the mixture into isolated
molecules [HPP17, p.2].

An important component that makes the identification of known compounds possible are
reference databases containing the mass spectra and other metadata of the compounds
retrieved from previous experiments [SHB13, p.3]. There are several of these databases
available. Two important commercial ones are the NIST mass spectral library and the
Wiley Registry, mostly containing electron ionization mass spectra and divided by com-
pound type [SHB13, p.3]. The most comprehensive library for synthetic cannabinoids is
the database “Mass Spectra of Designer Drugs” from Wiley Science Solutions. In 2022,
this database contains 32,855 compounds in total and 1,779 mass spectra of cannabi-

noids [R6s22]. While these commercially available libraries contain more compounds
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than open databases, they also have major drawbacks. The access often requires special
software and can be expensive. Furthermore, there are mostly no automatic continuous
updates [Sto+12, p.2]. This is especially a problem with designer drugs such as synthetic

cannabinoids because new substances are developed and brought to market rapidly.

Secarching such libraries for the unknown substance can be done by building a similarity
function to spectra in the database. A common scoring for the distance is the peak count
of matching peaks (i.e. peaks with the same m/z). Another approach is building a dot
product, taking the intensities into consideration [SHB13, p.4]. This is also what would
happen in the example drug screening process introduced before. The generated mass
spectrum depicted in Figure 6 or the peaks of it are matched against a database con-
taining known illicit drugs. This would result in a high similarity between the spectrum

at hand and substance in the database and thus in a positive result.

3.7 Ildentification of Novel Substances with Mass

Spectrometry

Until now, it was assumed that you search for substances that are acquainted in literature
and relevant databases. The example looked at the well-known compound THC which
is a component of cannabis. When looking at designer drugs like synthetic cannabi-
noids, the need for the identification of undiscovered substances emerges because of the
rapid development of new compounds in this field. Obviously, relevant databases do not
contain these novel or undiscovered substances. While the prior section describes drug
testing as a search for “known unknowns”, the identification of novel substances can be
referred to as searching for “unknown unknowns” [NF15, p.32]. The main task here is the
structure elucidation of the molecule [HB16, p.625]. Different methods for automatically
finding structural information to novel substances are mentioned in literature: Search-
ing for similar compounds, mass spectral classifiers, and in-silico fragmentation [SHB13,
pp.9-14]. The first approach bases on the assumption that spectral similarity corre-
sponds to structural similarity of compounds. Thus, this method searches for similar
spectra in a spectral library of known compounds. Mass spectral classifiers build classes
from different mass spectrum properties and use these for a search in a spectral library.

A drawback of approaches based on similarity and classifiers is the necessity of mass
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spectral libraries and their limitations explained in Section 3.6.

Therefore, an approach often used is in-silico fragmentation. In-silico fragmentation
refers to a technique where fragmentation processes are simulated in the computer.
Here, instead of querying spectral libraries, you use a database containing molecule
structures [SHB13, p.11]. In the case of undiscovered molecules, you can not use a
publicy available or commercial structural database, as they do not contain structures
yet to be found. A possible idea is to create a molecule structure generator which
produces a database of candidate structures [SHB13, p.11]. Here, a lot of structures are
created. Thus, when querying the candidate database, a simple search with the precursor
ion mass of a spectrum produces a lot of matches. Here in-silico fragmentation comes into
play. The idea is to simulate the fragmentation process and thus to predict the resulting
fragments. These fragments are then stored together with the compound [SHB13, p.11].
Thus, querying not only by the precursor mass, but also by the peaks of a mass spectrum
is possible. Peaks are matched with the predicted fragments which corresponds to the
idea of the similarity search in finding “known unknowns”. In the context of this thesis,
this simulation of the fragmentation can be simplified. As it is assumed that novel
synthetic cannabinoids are structurally similar to known ones, a model based on the
fragmentation patterns of known synthetic cannabinoids is used and applied on novel

ones.

3.8 Related Work

Several papers concern themselves with the identification of novel molecules, particularly
small molecules, based on mass spectrometry in conjunction with in-silico fragmenta-
tion. Hufsky and Bocker [HB16] reviewed methods used to approach this challenge.
Most approaches mentioned in the review follow the fundamental process of building
molecule candidate sets and predicting the fragmentation in a mass spectrometer. The
process consists of three stages: molecule-structure generation, in-silico fragmentation,

and matching.

There are various ways to produce novel molecule structures. Stravs et al. [Str+22] in-
troduced the tool “MSNovelist” which generates novel compound structures as SMILES

based on the mass spectrum of an analyte. They do this by creating a fingerprint based
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on the spectrum and generating the structure by making use of a recurrent neural net-
work which is trained on a dataset of over a million structures. This approach is designed
for a large class of compounds, namely metabolites, and delivered reasonable molecule
structures in more than half of the test spectra [Str4-22, p.869]. Another generative
approach based on deep learning was presented by Skinnider et al. [Ski+21]|. They use
a specialized form of a recurrent neural network, namely a Long Short-Term Memory
model. The model was trained for predicting structures of novel psychoactive substances.
It showed results similar to MSNovelist, with a perfect accuracy of 51% and ranking the
right structure among the top three in 71% test cases [Ski+21, p.979]. While these
accuracies about 50% do not look convincing at first, one must consider that structure
elucidation is a highly challenging task as there are so many theoretically possible struc-
tures, even if you know the molecular formula. For instance, when you only consider the
formula CgHgN,O, there exist more than 100 million possible structures [HB16, p.625].
This number scales up tremendously for synthetic cannabinoids, as these mostly contain

more atoms, which means more possible combinations.

Therefore, it is not only important to generate reasonable compounds, but also to model
the fragmentation process accurately which enables the filtering of reasonable candidate
molecules. An often used method is the rule-based fragmentation spectrum prediction.
Here, the fragmentation process for the generated molecules is simulated by applying
known fragmentation rules which mostly are provided by mass spectrometry experts.
While providing general fragmentation rules for a large class of molecules is difficult, find-
ing rules for the fragmentation of structurally similar molecules becomes easier [HB16,
p.626]. Kind et al. [Kin+13] used rule-based in-silico fragmentation to predict the frag-
mentation processes of prior generated lipids by defining experimentally aquired rules
for lipid subclasses. This approach shows a sensitivity of 89%, a specificity of 96%, and
a false positive rate of 4% when validating it with a then-current official spectral library.
This shows that a rule-based approach can definitely be a viable choice for predicting

fragmentation processes of a known compound class.
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4 Implementation

Current research shows that a fully automated approach for accurately identifying novel
substances with mass spectrometry remains a challenge. However, it also indicates that
reasonable results can be achieved by taking fragmentation processes into account and
restricting the set of possible targets to a small compound class. These observations
fit to the goal of this thesis: filtering mass spectrometry data of forensic laboratories
for “potential synthetic cannabinoids”, i.e. novel molecules that would fit the building

block description elucidated in 3.2.

However, simply stating that a molecule analyzed in the mass spectrometer could po-
tentially be a synthetic cannabinoid is not sufficient for forensic laboratories. Thus, the
implementation should support further manual analysis and therefore provide necessary
information regarding the mass spectra, the generated molecule, and its fragments. This
should especially eliminate the number of false positives, as an expert can filter these
out based on the given information rather easily. On the other hand, specificity should
also be reasonably high to minimize the manual effort. However, a high sensitivity is of
higher priority, as overlooking positives would be worse in drug screenings for obvious

reasons.

Another important requirement is that the implementation should not only support
the analysis of a single spectrum, but rather enable the filtering of multiple mass spec-
trometry files for potential synthetic cannabinoids, each file containing approximately
2000-3000 spectra. This necessity also leads to a non-functional requirement: the analyis
of single spectrum should be accomplished in a few seconds to enable a quick analysis of

multiple files. Also, efforts for setting up the analysis tools should optimally be low.

This implementation is mainly meant for forensic laboratories which use mass spectrom-

etry as a means for drug analysis. It enables the tracing and further analysis of not only
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known, but also potentially novel synthetic cannabinoids in mass spectrometry data.
An important property of the implementation is the low runtime for the analysis which
cnables the inspection of large mass spectrometry datasets that are common in forensic

laboratories.

The following chapter describes the implementation in detail. After an overview of the
solution outline, the project architecture is presented. Subsequently, the components
of the architecure are explained in detail. This explanation includes utilized software

packages and technologies, but also own developments.

4.1 Solution outline

Before the actual implementation, some general design decisions on the overall approach
had to be made. The general process for tracing potential synthetic cannabinoids in mass
spectrometry data consists of three steps: (i) generating structures of potential synthetic
cannabinoids, (ii) generate their fragments according to the rules of the fragmentation
model and (iii) matching mass spectrometry data with the generated molecules and their

fragments by their mass or molecular formula.

The computational generation of potential synthetic cannabinoids and their fragments
can take a long time as many possible structures adhere to the building block description.
Because of this, it was decided to separate the first two steps from the analysis applica-
tion. A script takes care of these two stages and provides the results of the process in

the form of a database to the application where the end user does the analysis.

This analysis part can be seen as the third and last stage, the mass spectra reading
and matching with the database. This is done by extracting the precursor ion and of
the peaks of a mass spectrum and then querying the database for molecules (or rather
their ionized form) that match the precursor ion and has fragments that match with
peaks of the mass spectrum. There are two possibilities that were considered for the
matching part: matching ions based on their monoisotopic mass, or calculating possible
molecular formulas for the ions contained in the mass spectrum and match compounds
and their fragments based on these calculated molecular formulas. The latter option has

the potential to filter certain formulas based on the count of elements the formula should
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have. A comparable implementation is the “MF Finder (Molecular Formula Finder)”
from ChemCalc [PB13]| where you can define ranges for the elements. However, the
filtering through element count ranges is mostly based on empirical values which can not
be assumed to be universally valid for all kinds of synthetic cannabinoids. Filtering out
potentially relevant compounds by giving wrong ranges is not unlikely. On top of that,
finding molecular formulas to a specific monoisotopic mass is an additional computing
task which means additional runtime in the analysis stage. Due of these reasons, the

first option was preferred.

4.2 Architecture

After the conception phase, an architecture was defined to chart components necessary

for the implementation. A graphical depiction is shown in Figure 7.

<<component>> E
SC Analyzer
<<component>> <<component>> import <<artifact>>
P E b E NSSRERERERELEEE Mass Spectrometry
SC Generator Analysis Tool Files
| create @Database Library
v
<<artifact>> lmport <<
component>>
_mpor | £]
CSYV Files SC Database

Figure 7: Illustration of the project architecture

The first main component is the SC' Generator. As the name suggests, it generates
structures of molecules that can be classified as synthetic cannabinoids. Additionally, it
generates corresponding fragments based on a rule-based fragmentation model. The SC

Generator writes the results of these two steps into Comma-separated values (CSV) files
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which are then imported into the SC' Database. There are multipe reasons for writing
CSV files and importing them into the database instead of inserting the results directly.
Firstly, this approach does not assume the underlying database which is used and thus
decreases dependence from the underlying technology. A second reason is that it is not
necessary for users to execute the generation process themselves. Also, if new rules for
the generation and fragmentation are implemented into the SC Generator, which leads
to updates of existing and inserts of new compounds, the user can simply download
the new datasets and import them instead of manually initiating the generation process

after an update.

The last component of the architecture is the Analysis Tool. This component is respon-
sible for the third stage mentioned in Section 4.1. Here, the user can import multiple
mass spectrometry files and search for potential synthetic cannabinoids within them. If
there are matches with the database, the user can perform further analysis by inspect-
ing the structure of the suggested compound, the fragments, the spectrum, or important

numbers like mass measurement deviations.

4.3 Components

The following section explains the implementations of the components shown in Figure 7
in detail. The component first presented is the database because other components
must adhere to the data model defined there. Thus, defining a sensible data model
in the beginning is essential. Another constituent is a database library which provides
functions to query and alter the contents of the database. This is especially important
for the analysis tool. Next, the basic functionality of the SC Generator is explained.
Lastly, the analysis tool, which can be seen as the main component of this thesis, is

elucidated.

4.3.1 Database

As mentioned in Section 4.2, the choice of a database technology does not affect the

generator, as there is no direct interaction between the generator and the database.
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However, the analysis tool interacts with the database with the help of a database
library. Thus, the choice of a database technology has to be considered. As the last
requirement mentioned in the introduction of this chapter mentions, the effort for setting
up the database should be low. The architecture shown in Figure 7 also does not require
the usage of a client /server-database. Due to these reasons, it was decided to use SQLite.
To make sure SQLite fits the needs of a project, the SQLite project provides a “When
to Use” [SQL22] which also includes a checklist when not to use SQLite. There, it
is recommended to stick to a client/server database if the accessed data is separated
by a network, if there are many concurrent writers, or if the data size is huge. The
first conditions definitely do not hold here, as the database is not supposed to be a
central component and writing only happens when importing the current datasets. The
last condition of the data not being too big should also not be a problem. While it is
true that many compounds are created in the generation process, the database size will
not come close to the terrabyte range where it is recommended to use a client/server
database. Also, when the need to use a client/server-database arises, the effort for
adjustments is low. Thus, SQLite can be considered a suitable choice as a database

system here.

The following subsection describes the data model of the database and the library which
is provided for querying and altering the data. The focus is not only on the structure,

but also on the information each field is supposed to give.

Data Model

An illustration of the database schema is shown in Figure 8. The two most important

entities are Compound and Fragment.

A compound is identified by its canonical SMILES string. Additionally, the atomic mass,
the molecular formula and the m/z of its positively ionized form (named ion mass) are
stored together with a compound. Another field is the name of the compound. As with
many other chemical compounds, the nomenclature of synthetic cannabinoids is not
always consistent. For instance, one of the first detected type of synthetic cannabinoids
is named JWH-018, which are the initials of the researcher John W. Huffman who first
synthesized this particular compound. Other nomenclatures reference the marketed

names [Pul+22, p.2]. An idea to standardize the naming in order to enable clear and
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Figure 8: Illustration of the database schema

unambiguous differentation is to use a semi-systematic naming framework proposed by
Pulver et al. [Pul+22, p.16-19]. This method focuses on the building blocks of synthetic
cannabinoids and uses existing names for these blocks or generates new ones if they do
not exist yet. The drawback of this method is that it is mostly limited to discovered
compunds and thus can not guarantee a consistent naming of novel molecules [Pul+22,
p.20]. The last field is the retention time of the compound in the chromatograph. This
serves as a placeholder for eventual implementations of a retention time prediction. The
reason for predicting the retention time is that using it as a parameter in the matching
process can improve accuracy of the matching [Jew+20, p.8]. As the matching bases on

the ion mass of a compound, queries are likely to involve this field.

There are two more entities which add information to a compound: Synonym und
EzxternalRef. Synonyms can be thought of as an addition to the semi-systematic naming
as means to tackle the challenge of inconsistent naming. There are often different terms
for the same substance in literature. For instance, PubChem lists over 300 synonyms for
Dronabinol that were used by different data contributors [Bio23c|. The entity Synonym
is supposed to cover at least some of these different terms for a compound to make
molecules more recognizable to the users. What is important to note, however, is the fact

that only compounds known in literature and compound databases can be recorded here.
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The same is true for the entity ExternalRef. Here, references to compound databases
are stored. This can be useful for finding additional information. Also, if the simple fact
that there is an external reference is a good indication that the compound at hand is
known in literature. The table references different database, e.g. PubChem [Bio23a] or
the CAS registry [Ser23]. An example for an entry in this table is depicted in Listing 1
which shows the insert of the PubChem ID for Dronabinol.

INSERT INTO ExternalRef (compound, platform, link)
VALUES (’CCCCCC1=CC(=C2C3C=C(cCccc3c(nc2=c1)(cycycyo’,
>PUBCHEM’, ’160787);

Listing 1: Example for an insert into the table ExternalRef

Analogous to compounds, fragments contain their SMILES representation as an at-
tribute. To identify a single fragment, however, the SMILES string of the compound it
arises from is also necessary as a foreign key and as a second part of a composite primary
key. Otherwise, a mapping between compounds and fragments would not be possible.

Analogous to compounds, the formula and the m/z of a fragment is stored.

Database Library

To create, alter, or query the prior introduced tables, a simple SQL wrapper library
in the form of a Python package was developed. As one of the main requirements
mentioned in the introduction of this chapter is the performance in the matching pro-
cess, little overhead when performing database reads is an important factor. Thus,
data from the database is read (and also written) with the lightweight standard module
sqlite3 [Fou23b]. To make a potential switch to other databases easier in the future, the
functions in this wrapper library are simplistic. Thus, most of the business logic was
implemented in other components. This library merely contains simple functions for
creating compounds, fragments, synonyms, and external references. Furthermore, func-
tions for querying compounds or fragments by ion mass or SMILES string arc provided
by the library.
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4.3.2 Synthetic Cannabinoid Generator

The next component is responsible for the generation of potential synthetic cannabinoids
and the simulation of the fragmentation process. It comes in the form of a Python script

which follows the process depicted in Figure 9.

sc_gen )

. Generate Simulate Simulate
molecule ionization fragmentation

[ Gather data

Write results into
CSV file

Figure 9: Activity diagram for the generation process of a single compound

Molecule Generation

As shown in the data model in Figure 8, the structures of molecules (and also fragments
of them) are represented as SMILES strings. Consequently, the molecule generation
works mostly with strings. A major part in the generation process is based on the
building-block definition of synthetic cannabinoids. It is assumed that all synthetic
cannabinoids follow this definition. The basic thought of generating the compounds
is shown in Listing 2. First, lists of possible structures for each building block are

defined. Here, sound knowledge of the chemical composition of synthetic cannabinoids
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is essential to build reasonable compounds. The last step is the concatenation of the
generated building blocks into one compound. This step corresponds to building the
cartesian product of the building block sets. Because a lot of compounds are created
here, a generator expression is used to allow lazy evaluation and to avoid out-of-memory
errors in the further steps. The challenge in the generation process is to find all possible
candidates for the building blocks.

def generate_syn_cans ():

heads = [...]
cores = [...]
linkers = [...]

tails = [...]

yield from (f’{head}.{core}.{linker}.{taill}’
for head in heads
for core in cores
for linker in linkers

for tail in tails)

Listing 2: Demonstration of the basic idea for generating synthetic cannabinoids

lonization and Fragmentation Simulation

After a compound is generated, the mass spectrometry process as described in Subsec-
tion 3.4.2 is simulated. All chemical reactions are executed with the rdChemReactions
module from the RDKit project [RDK22a]. Here, a reaction is defined as a single
SMARTS string. SMARTS is a language for specifying substructures of molecules and
is compatible with SMILES. It also supports reaction queries [Sys19a]. Reactions are
simulated in three steps: formulating a SMARTS query for matching the substructure
which is supposed to be changed, defining what reactions are supposed to happen (e.g.
adding atoms or breaking bonds), and running the reaction. RDKit works with an own

class for molecules named Mol.

The first step of the in-silico mass spectrometry process is ionization. This is simulated
by simply adding a positively charged H-atom to the molecule (protonation). The result
is a molecular ion which is also positively charged. It is assumed here that sufficient
energy is put into the molecule, resulting in fragmentation. As the compound generation

is based on building blocks, it is known which substructures arise from it. Thus, one can

27




Implementation

define fragmentation rules depending on the appearance of specific substructures. These

rules are built from empirical findings on the fragmentation of synthetic cannabinoids.

Data Gathering and Export

The result of the prior described mass spectrometry process includes the original com-
pound, the molecular ion, and the ions which arose from the fragmentation. All of them
are present as RDKit Mol objects. To extract the information needed which corresponds
to the fields of the two tables Compound and Fragment in Figure 8, RDKit provides
methods to get chemical information to a molecule. This includes the fields SMILES,
molecular formula, and mass. The ion mass (or more precise, the m/z) can be extracted
from the molecular ion. The same goes for the fragment ions. For the fields name and
retention time, default values are given for now. In the future, these fields can be used

for a systematic naming scheme and for the result of a retention time prediction.

After the data gathering process is finished, the resulting compound and fragment
datasets are exported to CSV files. These two datasets will contain a lot of rows. It is
not assessable how many, as the rules for the generation and fragmentation can always
change, but the number will be a multiple of millions or even billions. Thus, a efficient
writing mechanism is needed to keep the run time at an acceptable level. PyArrow,
which is the Python implementation of Apache Arrow [Fou23a], proved to be suitable

for this task as it implements multi-threaded writing innately.

4.3.3 Analysis Tool

The last component of the architecture is the analysis tool. Its subcomponents are
illustrated in Figure 10. It generally provides three core functionalities: reading mass
spectrometry files, matching spectra of these files with the database, and presenting
the results in a clear and purposeful manner. Correspondingly, these tasks are mainly
handled by three subcomponents: a mass spectrometry data parser, a matcher, and an

user interface.

The mass spectrometer data parser and the matcher provide functions to read mass spec-

28



Implementation

trometry files and match a spectrum with the database elucidated in Subsection 4.3.1,
respectively. These functions are called by the user interface when a user initiates a
new analysis. The database is included in the component diagram in Figure 10 as it
is a necessity for the matching process. An important requirement of the analysis tool
is that it is supposed to handle multiple files. As showing all analysis results at once
would be confusing for the user, only selective results are shown. To implement this
requirement, state handling is needed. Thus, a model which holds the current state is

added as a fourth subcomponent.

<<component>> E
Analysis Tool
<<artifact>> E
Mass Spectrometry |---------- > «component»
p i y . User Interface
Files import

| |
I i
«component» E «component» E

Mass Spectrometry Data Matcher
Parser

@Database Library

2

«component»
SC Database

Figure 10: Component diagram of the analysis tool

In terms of technology, the analysis tool is designed as a web application that is meant
to be run locally on the user’s computer. If needed, it can also be deployed on a central

webserver. To account for the low effort needed to set up the application, the lightweight
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web development framework Flask [Pro23a] is used. For local usage, Flask provides a
webserver. On the frontend side, plain Hypertext Markup Language (HTML) with
vanilla JavaScript is used. To show dynamic content, the template engine Jinja [Pro23b]

is used.

Mass Spectrometry Data Parser

Data produced in mass spectrometry can come in various formats. Mass spectrometer
vendors have their own proprietary formats. Alongside, open data formats exist [Deucs,
p.1612] which are definitely to be preferred in this implementation as the tool is not
supposed to be dependent on a specific vendor. Another important factor is the use case
where one can differentiate between files for preprocessing, mass spectrometer output
files which contain mainly the mass spectra, and files which represent results of further
analysis [Deucs, p.1613]. In this implementation, files containing the mass spectra are
needed. To keep things simple, a plain-text format is used. One of the most common
formats is the Mascot Generic Format (MGF) [Sci21].

Listing 3 shows an exemplary excerpt of a MGF file. Each MGF file can contain informa-
tion to multiple mass spectra. A single spectrum is delimited by the pair of statements
BEGIN IONS and END IONS. The field PEPMASS is an abbreviation for peptide mass,
as MGF was originally designed for proteomics [Sci21]. More generally, it describes the
precursor ion mass. TITLE is a field that applies to a single spectrum and thus is
supposed to be a unique description thereof. The field RTINSECONDS indicates the
retention time. CHARGE corresponds to the charge that was added to the precursor ion
during the mass spectrometry process. After these parameters are defined, a peak list
describing the fragment ions follows. Several defintions of a peak in the list is possible.
However, the parser assumes that each line of the peak list has two entries: the first

corresponds to the m/z of the fragment ion, the second to the intensity.
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BEGIN IONS
PEPMASS=379.18132782
TITLE=Spectrum 01, MS/MS at 2.12571666667 mins
RTINSECONDS=127.543
CHARGE=1+

55.06476 99.99997
56.18750 1.02602
91.03173 63.41049
91.08336 1.01154
116.05015 17.49912
144.04569 76.55125
144.10567 1.40017
145.04730 2.06304
158.056801 1.17788
198.09361 11.76957
234.06959 63.87904
235.07039 1.14591
END IONS

BEGIN IONS

END IONS

Listing 3: Example for the structure of Mascot Generic Format file

The parser first splits the file into the single spectra. For each of them, it then searches
for the precursor ion mass, the retention time, and the peak list. This is done with regular
expressions. Depending on the output format of the mass spectrometer, intensities of the
peaks arc often given as absolute values in the MGF file. In literature and in practice,
however, mostly relative intensities are used. As both formats could be relevant, for each
peak list the relative intensities are calculated additionally to the absolute intensities

by determining the intensity of the base peak and normalizing the intensities with the

qbsolu%‘e_mtenszty % 100.
intensity __basepeak

formula relative__intensity =

Different mass spectra do not have equal numbers of peaks. Depending on the mass
spectrometer, the resulting mass spectra can contain much noise. To account for this,
the parser has two additional parameters to filter the mass spectrum for peaks that are
likely to be the most relevant: a threshold for the relative intensity and a maximum

number of peaks to investigate.
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Matching

The next subcomponent of the analysis tool is responsible for the matching of the prior
acquired spectra with the database. If a spectrum has a match, it is called a suspicious
spectrum in the analysis tool, as it does not guarantee the validity, further analysis
by an expert is necessary. An important parameter for the matching process is the
mass accuracy of the mass spectrometer the spectra were acquired from and has to
be considered in all matching queries involving masses. The mass accuracy is given
as an absolute value in Da. Another parameter is the minimal number of peaks that
are supposed to match with the fragments that correspond to the compound in the

database.

def match_spectrum(spectrum, mass_accuracy, min_matching_fragments):
candidates = []
compounds = search_compounds (spectrum.precursor_ion_mass,
mass_accuracy)

for compound in compounds:

matching_fragments = []

fragments = search_fragments_to_compound (compound)

for fragment in fragments:

for peak in spectrum.peak_list:
if absolute(peak.mz - fragment.mz) <= accuracy:
matching_fragments.append (fragment)
if len(matching_fragments) >= min_matching_fragments
or spectrum.base_peak in matching_fragments:

candidates.append (compound + matching_fragments)

if len(candidates) > 1:
return filter candidates (candidates)

return candidates

Listing 4: Outline of the matching algorithm

Listing 4 shows an outline of the matching algorithm. It takes the prior discussed
mass accuracy and minimal number of matching fragments as parameters. First, the
database is searched for compounds that match with the precursor ion by querying the
database with the ion mass and taking the mass accuracy into account. This step already
restricts the number of potential matches to a small size. For each of these compounds,

corresponding fragments are searched in the database. Fragments that match with peaks
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in the spectrum are appended to a list of matching fragments. This approach results
in a nested loop in the implementation. The alternative would be a single loop over
the peak list and scarching for fragments for cach of the peaks. However, this would
result in a lot of additional database reads which are more expensive. Hence, the former

approach was preferred.

There are two possible conditions for a compound to be considered as a match to the
spectrum at hand. The first one is if enough corresponding fragments match with peaks
in the spectrum. The second possibility is that one of the matching fragments corre-
sponds to the base peak of the spectrum. If one of these conditions hold, the compound
is considered a potential match and thus added to the so-called list candidates. How-
ever, when both conditions do not hold, the compound is ignored in the further analysis

of the spectrum.

The last step of the matching process is the ranking of candidates. This is done when
multiple compounds are in line with the spectrum, i.e. when the list candidates in
Listing 4 has multiple entries. The determination of the suggested compound is carried

out by comparing following criteria (in the order they are enumerated):
1. Number of matching fragments

2. m/z of the peaks corresponding to the matching fragments (peaks with higher m/z
have higher priority)

3. Intensity of the peaks corresponding to the matching fragments (peaks with higher
intensity have higher priority)

To compare two compounds in step 2 and 3, the matching fragments are sorted by the

m/z in descending order for step 2, or respectively sorted by the intensity for step 3.

Another possibility to further filter for sensible compounds is by using the retention time
as an additional parameter in the matching process. This could even be a part of the
first step, the function querying compounds then would have an additional parameter
retention_time. As this would require a retention time prediction which is yet to be

implemented, the filter is not in effect yet.

The matching and ranking process is further explained with the help of a fictional ex-
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ample. For this, the process is demonstrated on a simple mass spectrum depicted in
Figure 11. Additionally to the peak list, the precursor ion mass and the retention time
is given, as it is read by the parser described before. It is assumed that the matching

function is called with the parameter min_matching fragments set to 2.
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Figure 11: Example spectrum for demonstrating the matching and ranking process

It is assumed now that the database search initiated by the call of the function

search_compounds in line 3 of Listing 4 has four compounds as a result for the example.
For each of these compounds, the database is searched for fragments corresponding to
the compound. Then the actual matching of the spectrum is happening. This is done
by iterating through the fragments found to the compound and through the peak list.
If they match by their m/z within the mass accuracy, the peak is considered to be
“matching” with the fragment. The results of this process for the example is depicted

in Figure 12.

Then the prior discussed conditions for a compound to be considered a potential match
are checked. The first compound has only one matching fragment which does not cor-
respond to the base peak. Thus, it is not considered as a candidate for the spectrum.

All other compounds are still considered as possible matches. The second compound
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has only one matching fragment, but as this fragment corresponds to the base peak, the

compound is also considered as a candidate.
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Figure 12: llustration of the matching fragments in the example mass spectrum

(matches are labelled with the m/z value)

In the last step, the candidates are filtered to only return compounds that are most

likely to be cligible. For this, the candidates are prioritized. Only the candidates with
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the highest priority are returned as matches. In the example, the second compound is
filtered out in the first step, as it has only one matching fragment in contrast to the
other two compounds which ecach have two matching fragments. The second filtering
criteria is the m/z of the fragments where fragments with a higher m/z value have higher
priority. In the example, sorting m/z values of the third compound results in the list
[190, 171] while doing the same for compound 4 results in [230, 171]. As the first
fragment of compound 4 has a higher m/z than the first fragment of compound 3, it has
a higher priority. Thus, the function call of filter candidates in line 17 in Listing 4
yields one compound, namely compound 4. Based on the matching rules, it is assumed
that this compound fits the input spectrum the best. Therefore, this is the compound

suggested to the user.

User Interface

As the sheer amount of compounds generated in the process described in 4.3.2 brings
forth a risk of false positives by coincidentally matching non-relevant spectra, providing
a good presentation of the results should support the user in performing further analysis.
When starting the tool and accessing it with a web browser, a screen for inputting the
MGFiles to analyze and parameters for the analysis is shown (see Figure 13). The first
three parameters, namely mass accuracy, minimal number of matching fragments, and
retention time accuracy are relevant for the matching process. The other two parameters,

minimal relative abundance and maximal number of peaks, are passed to the MGF-file

parser.

MGF files
Durchsuchen...  Keine Dateien ausgewahit.

Mass accuracy [Da] Minimal number of matching fragments Retention time accuracy [min]
0.005 2 1

tis base peak of spectrum

Minimal relative abundance [%] Maximal number of peaks

5 < 10

Start analysis

Figure 13: Start page of the analysis tool

The first step of the analyis is parsing the MGF files and optionally applying the two

aforementioned filters. Afterwards, the matching process is conducted for each spectrum
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in the files. The analysis results are then shown in an overview grouped by file. Figure 14
shows an example of this overview where five files, each containing > 2300 spectra, were
analyzed. For each of these files, the number of spectra in total and the number of
spectra that have potential matches are displayed. If there are suspicious spectra, a link

is depicted. This link leads to a detailed analysis of a single file.

Mass accuracy Minimal relative abundance Maximal number of peaks Minimal number of matching fragments

50 10 2

Search:

Filename 1. Number of spectra Number of suspicious spectra Analysis time
test_001.mgf 3307 13 2023-02-21 16:56:46 &
test_002.mgf 2682 3 2023-02-21 16:56:55 &
test_003.mgf 2385 3 2023-02-21 16:57:02 &
test_004.mgf 2934 0 2023-02-21 16:57:07
test_005.mgf 2513 2 2023-02-21 16:57:10 &

Figure 14: Overview of analysis results for all input files

The detailed file view consists of different subcomponents. The first one is a table dis-
playing information to all suspicious spectra found in the file (see Figure 15). Here,
information to the suggested compound, measurement deviations, the number of match-
ing fragments is display for each spectrum. FEach of these spectrum line also has a
button indicated by a magnifying glass which selects the spectrum and shows further

information for it.

Suspicious spectra

Search:

Spectrum Indexi. Suggested Compound lon Formula m/z m/zinDB'. m/zerror (mDa) = RT (min)' | RTinDB (min) = Diff. RT (min) | No. Fragments

Q 1538 Compound 626413 @  C23H27N20+ 347213  347.212 1.56 8.17 0.08 -8.09 3 ®©
Q 1749 Compound_ 627493 &  (C22H26N30+ 348207  348.207 026 893 0.08 -8.85 2 ®
Q 1761 Compound 627493 &  C22H26N30+ 348207  348.207 026 898 0.08 -8.90 2 0]

Figure 15: Overview of all suspicious spectra in a file

On the same page, three other subcomponents are shown which are specific for a spec-

trum, their content is loaded when clicking the magnifying glass corresponding to a
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spectrum. The displayed information include the molecule structure of the suggested
compound, a depiction of the spectrum, and a slideshow showing the molecular structure
and other properties of all fragments matching to the spectrum. The structure of the
compound and the fragments is created using the Draw module from RDKit [RDK22b].
The spectrum graphic is created with the means of matplotlib [tea23]. Additionally, the

possibility to download the spectrum as a image or as a CSV-file is provided.
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5 Evaluation

This chapter evaluates the method for tracing synthetic cannabinoids in mass spec-
trometry data presented in Chapter 4. Firstly, the test setup is elucidated. Then the

results of the evaluation are presented and discussed.

5.1 Test Setup

For the evaluation, the generator presented in Subsection 4.3.2 is used to generate virtual
synthetic cannabinoids and simulate their fragmentation. The resulting compounds and
fragments are then input into a database which follows the data model and constraints
elucidated in Subsection 4.3.1. What is important for the evaluation is that the database
contains no other compounds and fragments than those produced by the generator. At
the time of the evaluation, the database contains 685,880 compounds and 1,944,504

fragments.

For the evaluation, two separate datasets are used. The first dataset contains tandem
mass spectra of compounds which are known to be synthetic cannabinoids. This dataset
contains 76 compounds. For each compound, three MGF-files are provided. These three
files differ in one important parameter of the mass spectrometer: the amount of energy
that is put into the molecule in the ionization phase which is measured in electronvolt
(eV). What is important to note is that this parameter can influence how much fragmen-
tation is induced. The files include spectra with 10eV, 20eV, and 40eV. Here, sensitivity
is measured which can be defined as the ability to predict true positives [SHT19, p.2].
In the case of this evaluation, it means to measure how many of the prior mentioned

spectra are correctly identified as a synthetic cannabinoid.
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The second dataset is meant to test the specificity of the method which can be defined
as the ability to avoid predicting false positives [SHT19, p.2]. For this, 20 MGF-files,
containing 2,681 spectra on average, which are known to not contain any synthetic
cannabinoids or even compounds that would be suspicious, are used. Here, the eV as
input parameter is not as important, as even strong fragmentation is not supposed to

lead to matches in these files.

The implementation is tested with following parameters:
e Minimal number of matching fragments: 2
o Minimal relative abundance: 5%

o Maximal number of peaks per spectrum: 10

5.2 Results and Discussion

Firstly, the results of the test with the known synthetic cannabinoids are observed. Fig-
ure 16 shows the number of spectra that were correctly identified as synthetic cannabi-

noids grouped by the eV of the input spectra.

The method has a sensitivity of 60.5% for 10eV, 71% for 20eV, and 86.8% for 40eV. A
notable observation is that the number of synthetic cannabinoids identified as such is
increasing with the ¢V. Higher eV generally leads to stronger fragmentation. This is
helpful here as more fragments arise which can potentially be matched. However, it is
important to note that there can not be made a general recommendation what eV is

best, based on these observations.

Next, the evaluation of spectra, which are known to not having any synthetic cannabi-
noids, is examined. In total, 53,629 spectra were analyzed in this evaluation. Only 8 of
these showed matches with compounds in the database and thus can be considered as

false positives. This results in a specificity of 99.985%.

The sensitivity is reasonable, especially for spectra with strong fragmentation where
a large portion of synthetic cannabinoids were identified as such. However, further

improvement needs to be done in order to come closer to the goal of spotting all synthetic
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Figure 16: Matches in the evaluation of the method with known synthetic cannabinoids
(dashed line indicates the total number of evaluated spectra which is 76)

cannabinoids or compounds that could fall into this category in mass spectrometry
data. Reasons for not successfully spotting synthetic cannabinoids in the datasets can
be manifold. Maybe the generator does not have rules to produce such a compound or
does not produce suitable fragments. One possible reason could also be that the chosen
parameters are too strict. More loose parameters can lead to a higher sensitivity, e.g. by
setting the minimal number of matching fragments to 1. On the other hand, this would
have implications for the specificity which is very good in the evalution. While it seems
that lowering the specificity by a few percent is not bad, one has to consider that this
would have a significant impact on the usability of the analysis tool. More false-positives
means more manual effort to filter out coincidental matches. However, if a higher false-
positive rate is accepted by the user, loosening the parameters is definitely a possibility.

Thus an universal recommandation for choosing parameters can not be given, there
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always is a trade-off. Based on the data, users have to proceed in a exploratively way.
The analysis tool supports the user in this process by providing appropriate analysis

parameters.
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6 Conclusion

The implemented method tackles the challenge of tracing synthetic cannabinoids in
mass spectrometry data which arises from the rapid development of new substances. It
combines approaches from different fields known in literature and practice, namely struc-
ture generation based on combinatorial chemistry, rule-based in-silico fragmentation,
and matching those compounds in conjunction with the resulting fragments with input
spectra. The approach already shows promisingly good results in spotting synthetic
cannabinoids in mass spectrometry data. The implemented user interface supports the
user in further investigating potentially matching spectra. Besides general information
on the suggested compound, structural information to the compound and its fragments
is given. References to external compound databases are also given to further investigate

the compound if it is already known in literature.

Although the analysis already delivers reasonably good results, the sensitivity is sup-
posed to be higher. One way to achieve this could be to experimentally search for
parameters more suitable to find all synthetic cannabinoids. What must be also consid-
ered in this approach is to limit the loss of specificity. Too many false positives would
delimit the usability of the analyis tool. However, the specificity could then be kept
high by introducing retention time prediction which would filter out non-relevant com-
pounds. Another possible reason for the sensitivity not be closer to 100% is that the
corrsponding synthetic cannabinoids are simply not in the generated database. This
would mean that the generator needs further optimization. More rules to cover all pos-
sible synthetic cannabinoids are needed. Also, more fragmentation rules could also lead
to more matches. These rules depend on basic research on synthetic cannabinoids and
also on research on fragmentation processes thereof which means that this research as
to be done in order to improve the detectability. Another possible improvement regard-
ing the matching process could be to include the existence of external references. If

a suggested compound corresponds to a molecule in a public compound database, the
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likelihood that it is the correct one increases drastically. However, in order to enable
this additional parameter, external references need to be in the database for all exisiting
known synthetic cannabinoids. An automated process is not possible for this, a list
of external references for known molecules would be a requirement. Rapidly emerging
novel substances make this challenge even harder. Another important thing to point out
is that there are still new structures of synthetic cannabinoids emerging, therefore rules

for the compound generation have to be kept up to date.

There are other possible directions where future work can build on the results of this
thesis. For instance, the implementation could be used for other classes of novel psychac-
tive substances. The only component that would require adjustments is the generator.
Obviously, the feasibility depends on the predictability of molecular structures. A rela-
tively simple model for the structure of synthetic cannabinoids is used in this thesis. It

is questionable if the same is possible for other classes of designer drugs.

In conclusion, the implemented method can be used as a good indicator for synthetic
cannabinoids in mass spectrometry data. With relatively short run times, it is especially
well suited for datasets with a large amount of spectra. Further improvements have to
be done in order to increase the sensitivity of the method. Besides, including new
findings in research of synthetic cannabinoid structures is essential in order to cover new

developments.
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