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Why is stationarity so important?

Remember what stationarity means:

• Covariance Stationarity (CS)
{yt}∞t=0 is called covariance stationary iff

E[yt] := µt = µ constant over time and Cov (yt, yt+k) = γ(k) is a function of k and NOT of t (=⇒ V (yt) = σ2 constant over time)

(in words: constant expected value and variance; the autocovariance just depends on the time difference between two realizations and not on the time itself; this
kind of stationarity does not assume anything about the underlying distribution, i. e. the distribution might change over time.)

• Strictly Stationarity (SS)
{yt}∞t=0 is called strictly stationary iff

FY1,...,Yk
(yt, ..., yt+k) ≡ FY1,...,Yk

(ys, ..., ys+k)

(in words: every arbitrary joint distribution (of a finite number of random variables) is identical to the future joint distribution of the same number of random
variables).
This implies (if all moments exist) that all moments are constant and therefore strictly stationarity implies (if the first two moments exist) covariance stationarity.

Remember what we are interested in:
Although there is only one realization in each period, the aim is to find the underlying distribution in each period, the ensemble distribution (which we need for
forecasts, statistical tests, cointegration, etc.). But how can we get from a sample with size one a whole distribution?
The theoretic (empirically unprovable) background is called ergodic theorem.
For illustration, assume there are two trajectories x1 and x2 each consisting of four elements. Every element was drawn from the constant (cf. picture) true, underlying
(marginal) ensemble density fe(x) which we do not know, i. e. in particular, we do not know whether the realization is near the true mean µe or far away (the same with
the true variance σ2

e ). Therefore, the basic assumption for the existence of such a constant distribution is a „constant“ time series, i. e. a stationary time series.
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Trajectories: 
Trajectory 1: (𝑥1,1, 𝑥1,2, 𝑥1,3, 𝑥1,4) 
Trajectory 2: (𝑥2,1, 𝑥2,2, 𝑥2,3, 𝑥2,4) 
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Smoothed, estimated, empricial time density 𝑓 1(x) and 𝑓 2(x)  
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Although we have proven the existence, there is still the problem how to estimate it. Since we have more than one realization in time, we can build the empirical
time densities f̂1(x) and f̂2(x) with average values µ̂1 and µ̂2 and empirical variances σ̂2

1 and σ̂2
2 . The connection between the moments of the given, empirical time

densities and the unknown, underlying ensemble density is made by the Ergodic Theorem:
Assumptions: For an asymptotically covariance stationary time series, e. g. x1, which is ergodic (not empirically provable), it holds that

limT →∞ E


 1

T

T∑
t=1

x1t︸ ︷︷ ︸
µ̂1

−µe


2 = 0 where „ergodicity for the mean“ means:

1

T

T∑
t=1

x1t
P−→ µ1 exists

limT →∞ E




1

T

T∑
t=1

(x1t − µ̂1)2︸ ︷︷ ︸
σ̂2
1

−σ2
e


2 = 0 where „ergodicity for the variance“ means:

1

T

T∑
t=1

(x1t − µ̂1)2
P−→ σ2

1 exists

which means that for increasing sample size T the time average value µ̂1 converges to the ensemble mean µe (the same for variances σ̂2
1 and σ2

e ) and therefore connects the
moments of those a priori different densities. An important sufficient condition for both ergodicity for the mean and variance for Gaussian processes is

∑∞
j=0 |γ(j)| <∞

(in this case, this condition even ensures ergodicity for all moments).
Finally, remember that the basic assumption is a form of stationarity.


